Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What Symptoms and How Long? An Interpretable AI Approach for Depression Detection in Social Media (2305.13127v2)

Published 18 May 2023 in q-bio.QM, cs.AI, cs.CY, and cs.LG

Abstract: Depression is the most prevalent and serious mental illness, which induces grave financial and societal ramifications. Depression detection is key for early intervention to mitigate those consequences. Such a high-stake decision inherently necessitates interpretability. Although a few depression detection studies attempt to explain the decision based on the importance score or attention weights, these explanations misalign with the clinical depression diagnosis criterion that is based on depressive symptoms. To fill this gap, we follow the computational design science paradigm to develop a novel Multi-Scale Temporal Prototype Network (MSTPNet). MSTPNet innovatively detects and interprets depressive symptoms as well as how long they last. Extensive empirical analyses using a large-scale dataset show that MSTPNet outperforms state-of-the-art depression detection methods with an F1-score of 0.851. This result also reveals new symptoms that are unnoted in the survey approach, such as sharing admiration for a different life. We further conduct a user study to demonstrate its superiority over the benchmarks in interpretability. This study contributes to IS literature with a novel interpretable deep learning model for depression detection in social media. In practice, our proposed method can be implemented in social media platforms to provide personalized online resources for detected depressed patients.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Junwei Kuang (2 papers)
  2. Jiaheng Xie (9 papers)
  3. Zhijun Yan (3 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.