Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fast and Accurate Optical Flow Camera for Resource-Constrained Edge Applications (2305.13087v1)

Published 22 May 2023 in eess.IV

Abstract: Optical Flow (OF) is the movement pattern of pixels or edges that is caused in a visual scene by the relative motion between an agent and a scene. OF is used in a wide range of computer vision algorithms and robotics applications. While the calculation of OF is a resource-demanding task in terms of computational load and memory footprint, it needs to be executed at low latency, especially in robotics applications. Therefore, OF estimation is today performed on powerful CPUs or GPUs to satisfy the stringent requirements in terms of execution speed for control and actuation. On-sensor hardware acceleration is a promising approach to enable low latency OF calculations and fast execution even on resource-constrained devices such as nano drones and AR/VR glasses and headsets. This paper analyzes the achievable accuracy, frame rate, and power consumption when using a novel optical flow sensor consisting of a global shutter camera with an Application Specific Integrated Circuit (ASIC) for optical flow computation. The paper characterizes the optical flow sensor in high frame-rate, low-latency settings, with a frame rate of up to 88 fps at the full resolution of 1124 by 1364 pixels and up to 240 fps at a reduced camera resolution of 280 by 336, for both classical camera images and optical flow data.

Citations (3)

Summary

We haven't generated a summary for this paper yet.