Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Latent Magic: An Investigation into Adversarial Examples Crafted in the Semantic Latent Space (2305.12906v1)

Published 22 May 2023 in cs.LG

Abstract: Adversarial attacks against Deep Neural Networks(DNN) have been a crutial topic ever since \cite{goodfellow} purposed the vulnerability of DNNs. However, most prior works craft adversarial examples in the pixel space, following the $l_p$ norm constraint. In this paper, we give intuitional explain about why crafting adversarial examples in the latent space is equally efficient and important. We purpose a framework for crafting adversarial examples in semantic latent space based on an pre-trained Variational Auto Encoder from state-of-art Stable Diffusion Model\cite{SDM}. We also show that adversarial examples crafted in the latent space can also achieve a high level of fool rate. However, examples crafted from latent space are often hard to evaluated, as they doesn't follow a certain $l_p$ norm constraint, which is a big challenge for existing researches. To efficiently and accurately evaluate the adversarial examples crafted in the latent space, we purpose \textbf{a novel evaluation matric} based on SSIM\cite{SSIM} loss and fool rate.Additionally, we explain why FID\cite{FID} is not suitable for measuring such adversarial examples. To the best of our knowledge, it's the first evaluation metrics that is specifically designed to evaluate the quality of a adversarial attack. We also investigate the transferability of adversarial examples crafted in the latent space and show that they have superiority over adversarial examples crafted in the pixel space.

Citations (1)

Summary

We haven't generated a summary for this paper yet.