Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Crosslingual Transfer Learning for Low-Resource Languages Based on Multilingual Colexification Graphs (2305.12818v2)

Published 22 May 2023 in cs.CL and cs.AI

Abstract: In comparative linguistics, colexification refers to the phenomenon of a lexical form conveying two or more distinct meanings. Existing work on colexification patterns relies on annotated word lists, limiting scalability and usefulness in NLP. In contrast, we identify colexification patterns of more than 2,000 concepts across 1,335 languages directly from an unannotated parallel corpus. We then propose simple and effective methods to build multilingual graphs from the colexification patterns: ColexNet and ColexNet+. ColexNet's nodes are concepts and its edges are colexifications. In ColexNet+, concept nodes are additionally linked through intermediate nodes, each representing an ngram in one of 1,334 languages. We use ColexNet+ to train $\overrightarrow{\mbox{ColexNet+}}$, high-quality multilingual embeddings that are well-suited for transfer learning. In our experiments, we first show that ColexNet achieves high recall on CLICS, a dataset of crosslingual colexifications. We then evaluate $\overrightarrow{\mbox{ColexNet+}}$ on roundtrip translation, sentence retrieval and sentence classification and show that our embeddings surpass several transfer learning baselines. This demonstrates the benefits of using colexification as a source of information in multilingual NLP.

Citations (8)

Summary

We haven't generated a summary for this paper yet.