Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kernel Stein Discrepancy on Lie Groups: Theory and Applications (2305.12551v5)

Published 21 May 2023 in math.ST, math.PR, and stat.TH

Abstract: Distributional approximation is a fundamental problem in machine learning with numerous applications across all fields of science and engineering and beyond. The key challenge in most approximation methods is the need to tackle the intractable normalization constant pertaining to the parametrized distributions used to model the data. In this paper, we present a novel Stein operator on Lie groups leading to a kernel Stein discrepancy (KSD) which is a normalization-free loss function. We present several theoretical results characterizing the properties of this new KSD on Lie groups and its minimizers namely, the minimum KSD estimator (MKSDE). Proof of several properties of MKSDE are presented, including strong consistency, CLT and a closed form of the MKSDE for the von Mises-Fisher distribution on SO(N). Finally, we present experimental evidence depicting advantages of minimizing KSD over maximum likelihood estimation.

Summary

We haven't generated a summary for this paper yet.