Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs (2305.12334v4)

Published 21 May 2023 in cs.LG, cs.CE, and physics.atom-ph

Abstract: The great learning ability of deep learning models facilitates us to comprehend the real physical world, making learning to simulate complicated particle systems a promising endeavour. However, the complex laws of the physical world pose significant challenges to the learning based simulations, such as the varying spatial dependencies between interacting particles and varying temporal dependencies between particle system states in different time stamps, which dominate particles' interacting behaviour and the physical systems' evolution patterns. Existing learning based simulation methods fail to fully account for the complexities, making them unable to yield satisfactory simulations. To better comprehend the complex physical laws, this paper proposes a novel learning based simulation model- Graph Networks with Spatial-Temporal neural Ordinary Equations (GNSTODE)- that characterizes the varying spatial and temporal dependencies in particle systems using a united end-to-end framework. Through training with real-world particle-particle interaction observations, GNSTODE is able to simulate any possible particle systems with high precisions. We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb, with varying levels of spatial and temporal dependencies. The results show that the proposed GNSTODE yields significantly better simulations than state-of-the-art learning based simulation methods, which proves that GNSTODE can serve as an effective solution to particle simulations in real-world application.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. C. Herfeld and M. Ivanova, “Introduction: first principles in science—their status and justification,” Synthese, vol. 198, no. 14, pp. 3297–3308, 2021.
  2. S. Subramaniam, “Lagrangian–eulerian methods for multiphase flows,” Progress in Energy and Combustion Science, vol. 39, no. 2-3, pp. 215–245, 2013.
  3. S. L. Brunton, B. R. Noack, and P. Koumoutsakos, “Machine learning for fluid mechanics,” Annual Review of Fluid Mechanics, vol. 52, pp. 477–508, 2020.
  4. T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia, “Learning mesh-based simulation with graph networks,” arXiv preprint arXiv:2010.03409, 2020.
  5. A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia, “Learning to simulate complex physics with graph networks,” in International Conference on Machine Learning.   PMLR, 2020, pp. 8459–8468.
  6. J. Shlomi, P. Battaglia, and J.-R. Vlimant, “Graph neural networks in particle physics,” Machine Learning: Science and Technology, vol. 2, no. 2, p. 021001, jan 2021. [Online]. Available: https://doi.org/10.1088/2632-2153/abbf9a
  7. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on graph neural networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24, 2021.
  8. Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Torralba, “Learning particle dynamics for manipulating rigid bodies, deformable objects, and fluids,” in International Conference on Learning Representations, 2019.
  9. A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell, and P. Battaglia, “Graph networks as learnable physics engines for inference and control,” arXiv preprint arXiv:1806.01242, 2018.
  10. K. Martinkus, A. Lucchi, and N. Perraudin, “Scalable graph networks for particle simulations,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 10, 2021, pp. 8912–8920.
  11. A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, and P. Battaglia, “Hamiltonian graph networks with ode integrators,” arXiv preprint arXiv:1909.12790, 2019.
  12. H. Zhu, Z. Zhou, R. Yang, and A. Yu, “Discrete particle simulation of particulate systems: theoretical developments,” Chemical Engineering Science, vol. 62, no. 13, pp. 3378–3396, 2007.
  13. S. Chen and G. D. Doolen, “Lattice boltzmann method for fluid flows,” Annual review of fluid mechanics, vol. 30, no. 1, pp. 329–364, 1998.
  14. J. J. Monaghan, “Smoothed particle hydrodynamics,” Annual review of astronomy and astrophysics, vol. 30, no. 1, pp. 543–574, 1992.
  15. P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner et al., “Relational inductive biases, deep learning, and graph networks,” arXiv preprint arXiv:1806.01261, 2018.
  16. P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende et al., “Interaction networks for learning about objects, relations and physics,” in Advances in neural information processing systems, 2016, pp. 4502–4510.
  17. T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel, “Neural relational inference for interacting systems,” in International Conference on Machine Learning.   PMLR, 2018, pp. 2688–2697.
  18. S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural networks,” in Advances in neural information processing systems, vol. 32, 2019.
  19. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing for quantum chemistry,” arXiv preprint arXiv:1704.01212, 2017.
  20. Y. Li, T. Lin, K. Yi, D. Bear, D. L. Yamins, J. Wu, J. B. Tenenbaum, and A. Torralba, “Visual grounding of learned physical models,” in ICML, 2020.
  21. D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Network representation learning: A survey,” IEEE transactions on Big Data, vol. 6, no. 1, pp. 3–28, 2020.
  22. M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph domains,” in Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., vol. 2.   IEEE, 2005, pp. 729–734.
  23. M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral filtering,” in Advances in neural information processing systems, 2016, pp. 3844–3852.
  24. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in International Conference on Learning Representations, 2017, pp. 1–14.
  25. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention networks,” in International Conference on Learning Representations, 2018, pp. 1–12.
  26. F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph convolutional networks,” in International conference on machine learning.   PMLR, 2019, pp. 6861–6871.
  27. W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 1025–1035.
  28. K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?” arXiv preprint arXiv:1810.00826, 2018.
  29. J. Klicpera, S. Weißenberger, and S. Günnemann, “Diffusion improves graph learning,” Advances in Neural Information Processing Systems, vol. 32, pp. 13 354–13 366, 2019.
  30. S. Pan, R. Hu, S.-f. Fung, G. Long, J. Jiang, and C. Zhang, “Learning graph embedding with adversarial training methods,” IEEE transactions on cybernetics, vol. 50, no. 6, pp. 2475–2487, 2019.
  31. Y. Liu, S. Pan, M. Jin, C. Zhou, F. Xia, and P. S. Yu, “Graph self-supervised learning: A survey,” arXiv preprint arXiv:2103.00111, 2021.
  32. Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep spatial-temporal graph modeling,” arXiv preprint arXiv:1906.00121, 2019.
  33. Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting the dots: Multivariate time series forecasting with graph neural networks,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 753–763.
  34. Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis, “Anomaly detection on attributed networks via contrastive self-supervised learning,” IEEE Transactions on Neural Networks and Learning Systems, 2021.
  35. S. Wan, C. Gong, P. Zhong, S. Pan, G. Li, and J. Yang, “Hyperspectral image classification with context-aware dynamic graph convolutional network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 1, pp. 597–612, 2020.
  36. S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A survey on knowledge graphs: Representation, acquisition, and applications,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–21, 2021.
  37. M. Karamad, R. Magar, Y. Shi, S. Siahrostami, I. D. Gates, and A. B. Farimani, “Orbital graph convolutional neural network for material property prediction,” Physical Review Materials, vol. 4, no. 9, p. 093801, 2020.
  38. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko et al., “Highly accurate protein structure prediction with alphafold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021.
  39. R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural ordinary differential equations,” arXiv preprint arXiv:1806.07366, 2018.
  40. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  41. Y. Rubanova, R. T. Chen, and D. Duvenaud, “Latent odes for irregularly-sampled time series,” arXiv preprint arXiv:1907.03907, 2019.
  42. Z. Huang, Y. Sun, and W. Wang, “Learning continuous system dynamics from irregularly-sampled partial observations,” arXiv preprint arXiv:2011.03880, 2020.
  43. Y. Liang, K. Ouyang, H. Yan, Y. Wang, Z. Tong, and R. Zimmermann, “Modeling trajectories with neural ordinary differential equations.” in International Joint Conference on Artificial Intelligence, 2021, pp. 1498–1504.
  44. R. T. Chen, B. Amos, and M. Nickel, “Neural spatio-temporal point processes,” arXiv preprint arXiv:2011.04583, 2020.
  45. ——, “Learning neural event functions for ordinary differential equations,” arXiv preprint arXiv:2011.03902, 2020.
  46. M. Jin, Y. Zheng, Y.-F. Li, S. Chen, B. Yang, and S. Pan, “Multivariate time series forecasting with dynamic graph neural odes,” IEEE Transactions on Knowledge and Data Engineering, 2022.
  47. M. Jin, Y.-F. Li, and S. Pan, “Neural temporal walks: Motif-aware representation learning on continuous-time dynamic graphs,” in Advances in Neural Information Processing Systems, 2022.
  48. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
Citations (3)

Summary

We haven't generated a summary for this paper yet.