What Makes for Good Visual Tokenizers for Large Language Models? (2305.12223v2)
Abstract: We empirically investigate proper pre-training methods to build good visual tokenizers, making LLMs powerful Multimodal LLMs (MLLMs). In our benchmark, which is curated to evaluate MLLMs visual semantic understanding and fine-grained perception capabilities, we discussed different visual tokenizers pre-trained with dominant methods (i.e., DeiT, CLIP, MAE, DINO), and observe that: i) Fully/weakly supervised models capture more semantics than self-supervised models, but the gap is narrowed by scaling up the pre-training dataset. ii) Self-supervised models are better at fine-grained perception, where patch-level supervision is particularly effective. iii) Tuning the visual tokenizer leads to the loss of semantics obtained from large-scale pretraining, which is unfavorable with relatively small-scale instruction-tuning dataset. Given the findings, we reviewed methods that attempted to unify semantics and fine-grained visual understanding, e.g., patch-level feature distillation with semantically-rich targets. We obtain an intriguing insight mask-based strategies that were once all the rage may not be applicable for obtaining good visual tokenizers. Based on this critical observation, we obtain a new MLLM equipped with a tailored Good Visual Tokenizer (GVT), which exhibits strong visual comprehension capability at multiple scales. In particular, without introducing extra parameters and task-specific fine-tuning, GVT achieves superior performance on visual question answering, image captioning, and other fine-grained visual understanding tasks such as object counting and multi-class identification.
- Guangzhi Wang (17 papers)
- Yixiao Ge (99 papers)
- Xiaohan Ding (41 papers)
- Mohan Kankanhalli (117 papers)
- Ying Shan (252 papers)