Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SIDAR: Synthetic Image Dataset for Alignment & Restoration (2305.12036v1)

Published 19 May 2023 in cs.CV, cs.GR, and cs.LG

Abstract: Image alignment and image restoration are classical computer vision tasks. However, there is still a lack of datasets that provide enough data to train and evaluate end-to-end deep learning models. Obtaining ground-truth data for image alignment requires sophisticated structure-from-motion methods or optical flow systems that often do not provide enough data variance, i.e., typically providing a high number of image correspondences, while only introducing few changes of scenery within the underlying image sequences. Alternative approaches utilize random perspective distortions on existing image data. However, this only provides trivial distortions, lacking the complexity and variance of real-world scenarios. Instead, our proposed data augmentation helps to overcome the issue of data scarcity by using 3D rendering: images are added as textures onto a plane, then varying lighting conditions, shadows, and occlusions are added to the scene. The scene is rendered from multiple viewpoints, generating perspective distortions more consistent with real-world scenarios, with homographies closely resembling those of camera projections rather than randomized homographies. For each scene, we provide a sequence of distorted images with corresponding occlusion masks, homographies, and ground-truth labels. The resulting dataset can serve as a training and evaluation set for a multitude of tasks involving image alignment and artifact removal, such as deep homography estimation, dense image matching, 2D bundle adjustment, inpainting, shadow removal, denoising, content retrieval, and background subtraction. Our data generation pipeline is customizable and can be applied to any existing dataset, serving as a data augmentation to further improve the feature learning of any existing method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.