Estimates of Kähler metrics on noncompact finite volume hyperbolic Riemann surfaces, and their symmetric products (2305.11609v3)
Abstract: Let $X$ denote a noncompact finite volume hyperbolic Riemann surface of genus $g\geq 2$, with only one puncture at $i\infty$ (identifying $X$ with its universal cover $\mathbb{H}$). Let $\overline{X}:=X\cup\lbrace i\infty\rbrace$ denote the Satake compactification of $X$. Let $\Omega_{\overline{X}}$ denote the cotangent bundle on $\overline{X}$. For $k\gg1$, we derive an estimate for $\mu_{\overline{X}}{\mathrm{Ber},k}$, the Bergman metric associated to the line bundle $\mathcal{L}{k}:=\Omega_{\overline{X}}\otimes \mathcal{O}{\overline{X}}\big((k-1)\infty\big)$. For a given $d\geq 1$, the pull-back of the Fubini-Study metric on the Grassmannian, which we denote by $\mu{\mathrm{Sym}d(\overline{X})}{\mathrm{FS},k}$, defines a K\"ahler metric on $\mathrm{Sym}d(\overline{X})$, the $d$-fold symmetric product of $\overline{X}$. Using our estimates of $\mu_{\overline{X}}{\mathrm{Ber},k}$, as an application, we derive an estimate for $\mu_{\mathrm{Sym}d(\overline{X}),\mathrm{vol}}{\mathrm{FS},k}$, the volume form associated to the (1,1)-form $\mu_{\mathrm{Sym}d(\overline{X})}{\mathrm{FS},k}$.