Approximate Distance Sensitivity Oracles in Subquadratic Space (2305.11580v4)
Abstract: An $f$-edge fault-tolerant distance sensitive oracle ($f$-DSO) with stretch $\sigma \ge 1$ is a data structure that preprocesses a given undirected, unweighted graph $G$ with $n$ vertices and $m$ edges, and a positive integer $f$. When queried with a pair of vertices $s, t$ and a set $F$ of at most $f$ edges, it returns a $\sigma$-approximation of the $s$-$t$-distance in $G-F$. We study $f$-DSOs that take subquadratic space. Thorup and Zwick [JACM 2005] showed that this is only possible for $\sigma \ge 3$. We present, for any constant $f \ge 1$ and $\alpha \in (0, \frac{1}{2})$, and any $\varepsilon > 0$, a randomized $f$-DSO with stretch $ 3 + \varepsilon$ that w.h.p. takes $\widetilde{O}(n{2-\frac{\alpha}{f+1}}) \cdot O(\log n/\varepsilon){f+2}$ space and has an $O(n\alpha/\varepsilon2)$ query time. The time to build the oracle is $\widetilde{O}(mn{2-\frac{\alpha}{f+1}}) \cdot O(\log n/\varepsilon){f+1}$. We also give an improved construction for graphs with diameter at most $D$. For any positive integer $k$, we devise an $f$-DSO with stretch $2k-1$ that w.h.p. takes $O(D{f+o(1)} n{1+1/k})$ space and has $\widetilde{O}(D{o(1)})$ query time, with a preprocessing time of $O(D{f+o(1)} mn{1/k})$. Chechik, Cohen, Fiat, and Kaplan [SODA 2017] devised an $f$-DSO with stretch $1{+}\varepsilon$ and preprocessing time $O(n{5+o(1)}/\varepsilonf)$, albeit with a super-quadratic space requirement. We show how to reduce their preprocessing time to $O(mn{2+o(1)}/\varepsilonf)$.