Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

(DarkAI) Mapping the large-scale density field of dark matter using artificial intelligence (2305.11431v2)

Published 19 May 2023 in astro-ph.CO

Abstract: Herein, we present a deep-learning technique for reconstructing the dark-matter density field from the redshift-space distribution of dark-matter halos. We built a UNet-architecture neural network and trained it using the COmoving Lagrangian Acceleration fast simulation, which is an approximation of the N-body simulation with $5123$ particles in a box size of 500 Mpc $h{-1}$. Further, we tested the resulting UNet model not only with training-like test samples but also with standard N-body simulations, such as the Jiutian simulation with $61443$ particles in a box size of 1000 Mpc $h{-1}$ and the ELUCID simulation, which has a different cosmology. The real-space dark-matter density fields in the three simulations can be reconstructed reliably with only a small reduction of the cross-correlation power spectrum at 1% and 10% levels at $k=0.1$ and $0.3~h\mathrm{Mpc{-1}}$, respectively. The reconstruction clearly helps to correct for redshift-space distortions and is unaffected by the different cosmologies between the training (Planck2018) and test samples (WMAP5). Furthermore, we tested the application of the UNet-reconstructed density field to obtain the velocity & tidal field and found that this approach provides better results compared to the traditional approach based on the linear bias model, showing a 12.2% improvement in the correlation slope and a 21.1% reduction in the scatter between the predicted and true velocities. Thus, our method is highly efficient and has excellent extrapolation reliability beyond the training set. This provides an ideal solution for determining the three-dimensional underlying density field from the plentiful galaxy survey data.

Summary

We haven't generated a summary for this paper yet.