Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BERM: Training the Balanced and Extractable Representation for Matching to Improve Generalization Ability of Dense Retrieval (2305.11052v1)

Published 18 May 2023 in cs.IR and cs.CL

Abstract: Dense retrieval has shown promise in the first-stage retrieval process when trained on in-domain labeled datasets. However, previous studies have found that dense retrieval is hard to generalize to unseen domains due to its weak modeling of domain-invariant and interpretable feature (i.e., matching signal between two texts, which is the essence of information retrieval). In this paper, we propose a novel method to improve the generalization of dense retrieval via capturing matching signal called BERM. Fully fine-grained expression and query-oriented saliency are two properties of the matching signal. Thus, in BERM, a single passage is segmented into multiple units and two unit-level requirements are proposed for representation as the constraint in training to obtain the effective matching signal. One is semantic unit balance and the other is essential matching unit extractability. Unit-level view and balanced semantics make representation express the text in a fine-grained manner. Essential matching unit extractability makes passage representation sensitive to the given query to extract the pure matching information from the passage containing complex context. Experiments on BEIR show that our method can be effectively combined with different dense retrieval training methods (vanilla, hard negatives mining and knowledge distillation) to improve its generalization ability without any additional inference overhead and target domain data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shicheng Xu (36 papers)
  2. Liang Pang (94 papers)
  3. Huawei Shen (119 papers)
  4. Xueqi Cheng (274 papers)
Citations (9)