Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3D Registration with Maximal Cliques (2305.10854v1)

Published 18 May 2023 in cs.CV

Abstract: As a fundamental problem in computer vision, 3D point cloud registration (PCR) aims to seek the optimal pose to align a point cloud pair. In this paper, we present a 3D registration method with maximal cliques (MAC). The key insight is to loosen the previous maximum clique constraint, and mine more local consensus information in a graph for accurate pose hypotheses generation: 1) A compatibility graph is constructed to render the affinity relationship between initial correspondences. 2) We search for maximal cliques in the graph, each of which represents a consensus set. We perform node-guided clique selection then, where each node corresponds to the maximal clique with the greatest graph weight. 3) Transformation hypotheses are computed for the selected cliques by the SVD algorithm and the best hypothesis is used to perform registration. Extensive experiments on U3M, 3DMatch, 3DLoMatch and KITTI demonstrate that MAC effectively increases registration accuracy, outperforms various state-of-the-art methods and boosts the performance of deep-learned methods. MAC combined with deep-learned methods achieves state-of-the-art registration recall of 95.7% / 78.9% on 3DMatch / 3DLoMatch.

Citations (81)

Summary

We haven't generated a summary for this paper yet.