Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ahead-of-Time P-Tuning (2305.10835v1)

Published 18 May 2023 in cs.LG and cs.CL

Abstract: In this paper, we propose Ahead-of-Time (AoT) P-Tuning, a novel parameter-efficient fine-tuning method for pre-trained LLMs (LMs) that adds input-dependent bias before each Transformer layer. We evaluate AoT P-Tuning on GLUE and SuperGLUE benchmarking datasets using RoBERTa and DeBERTa models, showing that it outperforms BitFit and is comparable or better than other baseline methods for efficient fine-tuning. Additionally, we assess the inference overhead of AoT P-Tuning and demonstrate that it introduces negligible overhead compared to established baseline methods. Our method enables multi-task inference with a single backbone LM, making it a practical solution for real-world applications.

Summary

We haven't generated a summary for this paper yet.