Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A novel approach to infer population and cosmological properties with gravitational waves standard sirens and galaxy surveys (2305.10488v2)

Published 17 May 2023 in astro-ph.CO and gr-qc

Abstract: Gravitational wave (GW) sources at cosmological distances can be used to probe the expansion rate of the Universe. GWs directly provide a distance estimation of the source but no direct information on its redshift. The optimal scenario to obtain a redshift is through the direct identification of an electromagnetic (EM) counterpart and its host galaxy. With almost 100 GW sources detected without EM counterparts (dark sirens), it is becoming crucial to have statistical techniques able to perform cosmological studies in the absence of EM emission. Currently, only two techniques for dark sirens are used on GW observations: the spectral siren method, which is based on the source-frame mass distribution to estimate conjointly cosmology and the source's merger rate, and the galaxy survey method, which uses galaxy surveys to assign a probabilistic redshift to the source while fitting cosmology. It has been recognized, however, that these two methods are two sides of the same coin. In this paper, we present a novel approach to unify these two methods. We apply this approach to several observed GW events using the \textsc{glade+} galaxy catalog discussing limiting cases. We provide estimates of the Hubble constant, modified gravity propagation effects, and population properties for binary black holes. We also estimate the binary black hole merger rate per galaxy to be $10{-6}-10{-5} {\rm yr{-1}}$ depending on the galaxy catalog hypotheses.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. J. Aasi et al. (LIGO Scientific), Advanced LIGO, Class. Quant. Grav. 32, 074001 (2015), arXiv:1411.4547 [gr-qc] .
  2. F. Acernese et al. (VIRGO), Advanced Virgo: a second-generation interferometric gravitational wave detector, Class. Quant. Grav. 32, 024001 (2015), arXiv:1408.3978 [gr-qc] .
  3. LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration, Gwtc-3: Compact binary coalescences observed by ligo and virgo during the second part of the third observing run (2021), arXiv:2111.03606 [gr-qc] .
  4. M. Oguri, Measuring the distance-redshift relation with the cross-correlation of gravitational wave standard sirens and galaxies, Phys. Rev. D 93, 083511 (2016).
  5. S. Mukherjee, B. D. Wandelt, and J. Silk, Probing the theory of gravity with gravitational lensing of gravitational waves and galaxy surveys, Mon. Not. Roy. Astron. Soc. 494, 1956 (2020), arXiv:1908.08951 [astro-ph.CO] .
  6. C. C. Diaz and S. Mukherjee, Mapping the cosmic expansion history from LIGO-Virgo-KAGRA in synergy with DESI and SPHEREx, Mon. Not. Roy. Astron. Soc. 511, 2782 (2022), arXiv:2107.12787 [astro-ph.CO] .
  7. T. Ghosh, B. Biswas, and S. Bose, Simultaneous inference of neutron star equation of state and the Hubble constant with a population of merging neutron stars, Phys. Rev. D 106, 123529 (2022), arXiv:2203.11756 [astro-ph.CO] .
  8. C. Bambi, S. Katsanevas, and K. D. Kokkotas, eds., Handbook of Gravitational Wave Astronomy (Springer Singapore, 2021).
  9. B. F. Schutz, Determining the Hubble constant from gravitational wave observations, Nature 323, 310 (1986).
  10. D. E. Holz and S. A. Hughes, Using Gravitational-Wave Standard Sirens, ApJ 629, 15 (2005), astro-ph/0504616 .
  11. W. Del Pozzo, Inference of cosmological parameters from gravitational waves: Applications to second generation interferometers, Phys. Rev. D 86, 043011 (2012).
  12. H.-Y. Chen, M. Fishbach, and D. E. Holz, A two per cent Hubble constant measurement from standard sirens within five years, Nature 562, 545 (2018), arXiv:1712.06531 [astro-ph.CO] .
  13. M. Fishbach et al. (LIGO Scientific, Virgo), A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart, Astrophys. J. Lett. 871, L13 (2019a), arXiv:1807.05667 [astro-ph.CO] .
  14. R. Gray et al., Cosmological inference using gravitational wave standard sirens: A mock data analysis, Phys. Rev. D 101, 122001 (2020), arXiv:1908.06050 [gr-qc] .
  15. R. Gray, C. Messenger, and J. Veitch, A pixelated approach to galaxy catalogue incompleteness: improving the dark siren measurement of the Hubble constant, Monthly Notices of the Royal Astronomical Society 512, 1127 (2022), https://academic.oup.com/mnras/article-pdf/512/1/1127/45303118/stac366.pdf .
  16. H. Leandro, V. Marra, and R. Sturani, Measuring the hubble constant with black sirens, Phys. Rev. D 105, 023523 (2022).
  17. S. R. Taylor, J. R. Gair, and I. Mandel, Cosmology using advanced gravitational-wave detectors alone, Physical Review D 85, 10.1103/physrevd.85.023535 (2012).
  18. J. María Ezquiaga and D. E. Holz, Jumping the gap: searching for LIGO’s biggest black holes, arXiv , arXiv:2006.02211 (2020), arXiv:2006.02211 [astro-ph.HE] .
  19. S. Mukherjee, The redshift dependence of black hole mass distribution: is it reliable for standard sirens cosmology?, Mon. Not. Roy. Astron. Soc. 515, 5495 (2022), arXiv:2112.10256 [astro-ph.CO] .
  20. J. M. Ezquiaga, Hearing gravity from the cosmos: GWTC-2 probes general relativity at cosmological scales, Physics Letters B 822, 136665 (2021), arXiv:2104.05139 [astro-ph.CO] .
  21. J. M. Ezquiaga and D. E. Holz, Spectral Sirens: Cosmology from the Full Mass Distribution of Compact Binaries, Phys. Rev. Lett. 129, 061102 (2022), arXiv:2202.08240 [astro-ph.CO] .
  22. C. Karathanasis, S. Mukherjee, and S. Mastrogiovanni, Binary black holes population and cosmology in new lights: Signature of PISN mass and formation channel in GWTC-3, arXiv , arXiv:2204.13495 (2022), arXiv:2204.13495 [astro-ph.CO] .
  23. C. Ye and M. Fishbach, Cosmology with standard sirens at cosmic noon, PhRvD 104, 043507 (2021), arXiv:2103.14038 [astro-ph.CO] .
  24. I. Mandel, W. M. Farr, and J. R. Gair, Extracting distribution parameters from multiple uncertain observations with selection biases, MNRAS 486, 1086 (2019), arXiv:1809.02063 [physics.data-an] .
  25. R. Abbott et al. (LIGO Scientific, Virgo), Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog, Astrophys. J. Lett. 913, L7 (2021b), arXiv:2010.14533 [astro-ph.HE] .
  26. M. Mancarella, E. Genoud-Prachex, and M. Maggiore, Cosmology and modified gravitational wave propagation from binary black hole population models, PhRvD 105, 064030 (2022), arXiv:2112.05728 [gr-qc] .
  27. M. Fishbach and D. E. Holz, Where Are LIGO’s Big Black Holes?, ApJ 851, L25 (2017), arXiv:1709.08584 [astro-ph.HE] .
  28. L. P. Singer et al., Going the Distance: Mapping Host Galaxies of LIGO and Virgo Sources in Three Dimensions Using Local Cosmography and Targeted Follow-up, Astrophys. J. Lett. 829, L15 (2016), arXiv:1603.07333 [astro-ph.HE] .
  29. M. Fishbach et al. (LIGO Scientific, Virgo), A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart, Astrophys. J. Lett. 871, L13 (2019b), arXiv:1807.05667 [astro-ph.CO] .
  30. LIGO Scientific Collaboration and Virgo Collaboration, A gravitational-wave measurement of the hubble constant following the second observing run of advanced ligo and virgo (2019), arXiv:1908.06060 [astro-ph.CO] .
  31. P. Madau and M. Dickinson, Cosmic Star-Formation History, ARA&A 52, 415 (2014), arXiv:1403.0007 [astro-ph.CO] .
  32. I. Magaña Hernandez, Constraining the number of spacetime dimensions from gwtc-3 binary black hole mergers, Phys. Rev. D 107, 084033 (2023).
  33. W. M. Farr, Accuracy Requirements for Empirically Measured Selection Functions, Research Notes of the American Astronomical Society 3, 66 (2019), arXiv:1904.10879 [astro-ph.IM] .
Citations (11)

Summary

We haven't generated a summary for this paper yet.