Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

G-Adapter: Towards Structure-Aware Parameter-Efficient Transfer Learning for Graph Transformer Networks (2305.10329v1)

Published 17 May 2023 in cs.LG

Abstract: It has become a popular paradigm to transfer the knowledge of large-scale pre-trained models to various downstream tasks via fine-tuning the entire model parameters. However, with the growth of model scale and the rising number of downstream tasks, this paradigm inevitably meets the challenges in terms of computation consumption and memory footprint issues. Recently, Parameter-Efficient Fine-Tuning (PEFT) (e.g., Adapter, LoRA, BitFit) shows a promising paradigm to alleviate these concerns by updating only a portion of parameters. Despite these PEFTs having demonstrated satisfactory performance in natural language processing, it remains under-explored for the question of whether these techniques could be transferred to graph-based tasks with Graph Transformer Networks (GTNs). Therefore, in this paper, we fill this gap by providing extensive benchmarks with traditional PEFTs on a range of graph-based downstream tasks. Our empirical study shows that it is sub-optimal to directly transfer existing PEFTs to graph-based tasks due to the issue of feature distribution shift. To address this issue, we propose a novel structure-aware PEFT approach, named G-Adapter, which leverages graph convolution operation to introduce graph structure (e.g., graph adjacent matrix) as an inductive bias to guide the updating process. Besides, we propose Bregman proximal point optimization to further alleviate feature distribution shift by preventing the model from aggressive update. Extensive experiments demonstrate that G-Adapter obtains the state-of-the-art performance compared to the counterparts on nine graph benchmark datasets based on two pre-trained GTNs, and delivers tremendous memory footprint efficiency compared to the conventional paradigm.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Anchun Gui (3 papers)
  2. Jinqiang Ye (1 paper)
  3. Han Xiao (104 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.