Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation (2305.10223v4)

Published 17 May 2023 in cs.CV and cs.MM

Abstract: Contemporary Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast, achieving commendable results on specific datasets. Nevertheless, these approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios. Insufficient constraints on complex pixel-wise mapping learning lead to overfitting to specific types of noise and artifacts associated with low-light conditions, reducing effectiveness in variable lighting scenarios. To this end, we first propose a method for estimating the noise level in low light images in a quick and accurate way. This facilitates precise denoising, prevents over-smoothing, and adapts to dynamic noise patterns. Subsequently, we devise a Learnable Illumination Interpolator (LII), which employs learnlable interpolation operations between the input and unit vector to satisfy general constraints between illumination and input. Finally, we introduce a self-regularization loss that incorporates intrinsic image properties and essential visual attributes to guide the output towards meeting human visual expectations. Comprehensive experiments validate the competitiveness of our proposed algorithm in both qualitative and quantitative assessments. Notably, our noise estimation method, with linear time complexity and suitable for various denoisers, significantly improves both denoising and enhancement performance. Benefiting from this, our approach achieves a 0.675dB PSNR improvement on the LOL dataset and 0.818dB on the MIT dataset on LLIE task, even compared to supervised methods. The source code is available at \href{https://doi.org/10.5281/zenodo.11463142}{this DOI repository} and the specific code for noise estimation can be found at \href{https://github.com/GoogolplexGoodenough/noise_estimate}{this separate GitHub link}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. doi:https://doi.org/10.1016/j.neucom.2021.04.076. URL https://www.sciencedirect.com/science/article/pii/S0925231221006263
  2. doi:https://doi.org/10.1016/j.neucom.2022.08.042. URL https://www.sciencedirect.com/science/article/pii/S0925231222010165
  3. doi:10.1109/TITS.2022.3177615.
  4. doi:10.1109/MLSP49062.2020.9231894. URL https://doi.org/10.1109/MLSP49062.2020.9231894
  5. doi:10.1016/J.NEUCOM.2022.08.042. URL https://doi.org/10.1016/j.neucom.2022.08.042
  6. doi:10.1016/J.NEUCOM.2021.03.107. URL https://doi.org/10.1016/j.neucom.2021.03.107
  7. doi:10.1109/CVPR.2017.300.
  8. doi:10.1109/TIP.2017.2662206.
  9. doi:10.1109/CVPR.2019.00181.
  10. doi:10.1109/TIP.2012.2221728.
  11. doi:10.1109/TIP.2013.2283400.
  12. doi:10.1109/ICCV.2015.62.
  13. doi:10.1109/TIP.2016.2588320.
  14. doi:10.1109/ICIP.2012.6467022.
  15. doi:10.1109/TIP.2016.2639450.
  16. doi:10.1109/TIP.2015.2442920.
  17. doi:10.1109/TIP.2013.2261309.
  18. doi:10.1007/s11042-017-4783-x. URL https://doi.org/10.1007/s11042-017-4783-x
  19. doi:10.1002/j.1538-7305.1948.tb01338.x.
  20. doi:10.1109/TIP.2006.888338.
  21. A. Mittal, R. Soundararajan, A. C. Bovik, Making a “completely blind” image quality analyzer, IEEE Signal Processing Letters 20 (3) (2013) 209–212. doi:10.1109/LSP.2012.2227726.
  22. doi:10.1109/TIP.2018.2810539.

Summary

We haven't generated a summary for this paper yet.