Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy Loss of Noisy Stochastic Gradient Descent Might Converge Even for Non-Convex Losses (2305.09903v1)

Published 17 May 2023 in cs.LG, cs.CR, cs.IT, math.IT, and math.OC

Abstract: The Noisy-SGD algorithm is widely used for privately training machine learning models. Traditional privacy analyses of this algorithm assume that the internal state is publicly revealed, resulting in privacy loss bounds that increase indefinitely with the number of iterations. However, recent findings have shown that if the internal state remains hidden, then the privacy loss might remain bounded. Nevertheless, this remarkable result heavily relies on the assumption of (strong) convexity of the loss function. It remains an important open problem to further relax this condition while proving similar convergent upper bounds on the privacy loss. In this work, we address this problem for DP-SGD, a popular variant of Noisy-SGD that incorporates gradient clipping to limit the impact of individual samples on the training process. Our findings demonstrate that the privacy loss of projected DP-SGD converges exponentially fast, without requiring convexity or smoothness assumptions on the loss function. In addition, we analyze the privacy loss of regularized (unprojected) DP-SGD. To obtain these results, we directly analyze the hockey-stick divergence between coupled stochastic processes by relying on non-linear data processing inequalities.

Citations (5)

Summary

We haven't generated a summary for this paper yet.