2000 character limit reached
On asymptotically automatic sequences (2305.09885v3)
Published 17 May 2023 in math.NT, cs.FL, and math.CO
Abstract: We study the notion of an asymptotically automatic sequence, which generalises the notion of an automatic sequence. While $k$-automatic sequences are characterised by finiteness of $k$-kernels, the $k$-kernels of asymptotically $k$-automatic sequences are only required to be finite up to equality almost everywhere. We prove basic closure properties and a linear bound on asymptotic subword complexity, show that results concerning frequencies of symbols are no longer true for the asymptotic analogue, and discuss some classification problems.
- J.-P. Allouche and L. Goldmakher. Mock characters and the Kronecker symbol. J. Number Theory, 192:356–372, 2018.
- B. Adamczewski and J. Konieczny. Bracket words: a generalisation of Sturmian words arising from generalised polynomials. Preprint, arXiv: 2203.10814 [math.NT], 2023+.
- J.-P. Allouche and J. Shallit. The ring of k𝑘kitalic_k-regular sequences. Theoret. Comput. Sci., 98(2):163–197, 1992.
- J.-P. Allouche and J. Shallit. Automatic sequences. Cambridge University Press, Cambridge, 2003.
- J.-P. Allouche and J. Shallit. The ring of k𝑘kitalic_k-regular sequences. II. volume 307, pages 3–29. 2003. Words.
- Transcendence of generating functions whose coefficients are multiplicative. Trans. Amer. Math. Soc., 364(2):933–959, 2012.
- P. Borwein and M. Coons. Transcendence of power series for some number theoretic functions. Proc. Amer. Math. Soc., 137(4):1303–1305, 2009.
- Completely multiplicative functions taking values in {−1,1}11\{-1,1\}{ - 1 , 1 }. Trans. Amer. Math. Soc., 362(12):6279–6291, 2010.
- The minimal growth of a k𝑘kitalic_k-regular sequence. Bull. Aust. Math. Soc., 90(2):195–203, 2014.
- J. P. Bell. A generalization of Cobham’s theorem for regular sequences. Sém. Lothar. Combin., 54A:Art. B54Ap. 15, 2005/07.
- An Extension of Weyl’s Equidistribution Theorem to Generalized Polynomials and Applications. International Mathematics Research Notices, 03 2020. rnaa035.
- J. Byszewski and J. Konieczny. Sparse generalised polynomials. Trans. Amer. Math. Soc., 370(11):8081–8109, 2018.
- J. Byszewski and J. Konieczny. Automatic sequences and generalised polynomials. Canad. J. Math., 72(2):392–426, 2020.
- V. Bergelson and A. Leibman. Distribution of values of bounded generalized polynomials. Acta Math., 198(2):155–230, 2007.
- Sequences with minimal block growth. Math. Systems Theory, 7:138–153, 1973.
- M. Coons. (Non)automaticity of number theoretic functions. J. Théor. Nombres Bordeaux, 22(2):339–352, 2010.
- P. D. T. A. Elliott. The value distribution of additive arithmetic functions on a line. J. Reine Angew. Math., 642:57–108, 2010.
- N. P. Fogg. Substitutions in dynamics, arithmetics and combinatorics, volume 1794 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.
- G. Halász. On the distribution of additive and the mean values of multiplicative arithmetic functions. Studia Sci. Math. Hungar., 6:211–233, 1971.
- I. J. Håland. Uniform distribution of generalized polynomials. J. Number Theory, 45(3):327–366, 1993.
- I. J. Håland. Uniform distribution of generalized polynomials of the product type. Acta Arith., 67(1):13–27, 1994.
- Polynomials involving the floor function. Math. Scand., 76(2):194–200, 1995.
- O. Klurman and P. Kurlberg. A note on multiplicative automatic sequences. C. R. Math. Acad. Sci. Paris, 357(10):752–755, 2019.
- O. Klurman and P. Kurlberg. A note on multiplicative automatic sequences, II. Bull. Lond. Math. Soc., 52(1):185–188, 2020.
- O. Klurman and J. Konieczny. Classification automatic semigroups and related problems. In preparation, 2023+.
- Multiplicative automatic sequences. Math. Z., 300(2):1297–1318, 2022.
- O. Klurman. Correlations of multiplicative functions and applications. Compos. Math., 153(8):1622–1657, 2017.
- J. Konieczny. On multiplicative automatic sequences. Bull. Lond. Math. Soc., 52(1):175–184, 2020.
- J. Lond. Math. Soc. (2), 105(1):154–219, 2022.
- J. Konieczny. An asymptotic version of Cobham’s theorem. Preprint, arXiv: 2209.09588 [math.NT], 2023+.
- A. Leibman. A canonical form and the distribution of values of generalized polynomials. Israel J. Math., 188:131–176, 2012.
- S. Li. On completely multiplicative automatic sequences. J. Number Theory, 213:388–399, 2020.
- J.-C. Schlage-Puchta. A criterion for non-automaticity of sequences. J. Integer Seq., 6(3):Article 03.3.8, 5, 2003.
- T. Tao. The logarithmically averaged Chowla and Elliott conjectures for two-point correlations. Forum Math. Pi, 4:e8, 36, 2016.
- S. Yazdani. Multiplicative functions and k𝑘kitalic_k-automatic sequences. J. Théor. Nombres Bordeaux, 13(2):651–658, 2001.