Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On asymptotically automatic sequences (2305.09885v3)

Published 17 May 2023 in math.NT, cs.FL, and math.CO

Abstract: We study the notion of an asymptotically automatic sequence, which generalises the notion of an automatic sequence. While $k$-automatic sequences are characterised by finiteness of $k$-kernels, the $k$-kernels of asymptotically $k$-automatic sequences are only required to be finite up to equality almost everywhere. We prove basic closure properties and a linear bound on asymptotic subword complexity, show that results concerning frequencies of symbols are no longer true for the asymptotic analogue, and discuss some classification problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. J.-P. Allouche and L. Goldmakher. Mock characters and the Kronecker symbol. J. Number Theory, 192:356–372, 2018.
  2. B. Adamczewski and J. Konieczny. Bracket words: a generalisation of Sturmian words arising from generalised polynomials. Preprint, arXiv: 2203.10814 [math.NT], 2023+.
  3. J.-P. Allouche and J. Shallit. The ring of k𝑘kitalic_k-regular sequences. Theoret. Comput. Sci., 98(2):163–197, 1992.
  4. J.-P. Allouche and J. Shallit. Automatic sequences. Cambridge University Press, Cambridge, 2003.
  5. J.-P. Allouche and J. Shallit. The ring of k𝑘kitalic_k-regular sequences. II. volume 307, pages 3–29. 2003. Words.
  6. Transcendence of generating functions whose coefficients are multiplicative. Trans. Amer. Math. Soc., 364(2):933–959, 2012.
  7. P. Borwein and M. Coons. Transcendence of power series for some number theoretic functions. Proc. Amer. Math. Soc., 137(4):1303–1305, 2009.
  8. Completely multiplicative functions taking values in {−1,1}11\{-1,1\}{ - 1 , 1 }. Trans. Amer. Math. Soc., 362(12):6279–6291, 2010.
  9. The minimal growth of a k𝑘kitalic_k-regular sequence. Bull. Aust. Math. Soc., 90(2):195–203, 2014.
  10. J. P. Bell. A generalization of Cobham’s theorem for regular sequences. Sém. Lothar. Combin., 54A:Art. B54Ap. 15, 2005/07.
  11. An Extension of Weyl’s Equidistribution Theorem to Generalized Polynomials and Applications. International Mathematics Research Notices, 03 2020. rnaa035.
  12. J. Byszewski and J. Konieczny. Sparse generalised polynomials. Trans. Amer. Math. Soc., 370(11):8081–8109, 2018.
  13. J. Byszewski and J. Konieczny. Automatic sequences and generalised polynomials. Canad. J. Math., 72(2):392–426, 2020.
  14. V. Bergelson and A. Leibman. Distribution of values of bounded generalized polynomials. Acta Math., 198(2):155–230, 2007.
  15. Sequences with minimal block growth. Math. Systems Theory, 7:138–153, 1973.
  16. M. Coons. (Non)automaticity of number theoretic functions. J. Théor. Nombres Bordeaux, 22(2):339–352, 2010.
  17. P. D. T. A. Elliott. The value distribution of additive arithmetic functions on a line. J. Reine Angew. Math., 642:57–108, 2010.
  18. N. P. Fogg. Substitutions in dynamics, arithmetics and combinatorics, volume 1794 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.
  19. G. Halász. On the distribution of additive and the mean values of multiplicative arithmetic functions. Studia Sci. Math. Hungar., 6:211–233, 1971.
  20. I. J. Håland. Uniform distribution of generalized polynomials. J. Number Theory, 45(3):327–366, 1993.
  21. I. J. Håland. Uniform distribution of generalized polynomials of the product type. Acta Arith., 67(1):13–27, 1994.
  22. Polynomials involving the floor function. Math. Scand., 76(2):194–200, 1995.
  23. O. Klurman and P. Kurlberg. A note on multiplicative automatic sequences. C. R. Math. Acad. Sci. Paris, 357(10):752–755, 2019.
  24. O. Klurman and P. Kurlberg. A note on multiplicative automatic sequences, II. Bull. Lond. Math. Soc., 52(1):185–188, 2020.
  25. O. Klurman and J. Konieczny. Classification automatic semigroups and related problems. In preparation, 2023+.
  26. Multiplicative automatic sequences. Math. Z., 300(2):1297–1318, 2022.
  27. O. Klurman. Correlations of multiplicative functions and applications. Compos. Math., 153(8):1622–1657, 2017.
  28. J. Konieczny. On multiplicative automatic sequences. Bull. Lond. Math. Soc., 52(1):175–184, 2020.
  29. J. Lond. Math. Soc. (2), 105(1):154–219, 2022.
  30. J. Konieczny. An asymptotic version of Cobham’s theorem. Preprint, arXiv: 2209.09588 [math.NT], 2023+.
  31. A. Leibman. A canonical form and the distribution of values of generalized polynomials. Israel J. Math., 188:131–176, 2012.
  32. S. Li. On completely multiplicative automatic sequences. J. Number Theory, 213:388–399, 2020.
  33. J.-C. Schlage-Puchta. A criterion for non-automaticity of sequences. J. Integer Seq., 6(3):Article 03.3.8, 5, 2003.
  34. T. Tao. The logarithmically averaged Chowla and Elliott conjectures for two-point correlations. Forum Math. Pi, 4:e8, 36, 2016.
  35. S. Yazdani. Multiplicative functions and k𝑘kitalic_k-automatic sequences. J. Théor. Nombres Bordeaux, 13(2):651–658, 2001.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com