Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interactive and Incremental Learning of Spatial Object Relations from Human Demonstrations (2305.09551v1)

Published 16 May 2023 in cs.RO

Abstract: Humans use semantic concepts such as spatial relations between objects to describe scenes and communicate tasks such as "Put the tea to the right of the cup" or "Move the plate between the fork and the spoon." Just as children, assistive robots must be able to learn the sub-symbolic meaning of such concepts from human demonstrations and instructions. We address the problem of incrementally learning geometric models of spatial relations from few demonstrations collected online during interaction with a human. Such models enable a robot to manipulate objects in order to fulfill desired spatial relations specified by verbal instructions. At the start, we assume the robot has no geometric model of spatial relations. Given a task as above, the robot requests the user to demonstrate the task once in order to create a model from a single demonstration, leveraging cylindrical probability distribution as generative representation of spatial relations. We show how this model can be updated incrementally with each new demonstration without access to past examples in a sample-efficient way using incremental maximum likelihood estimation, and demonstrate the approach on a real humanoid robot.

Citations (4)

Summary

We haven't generated a summary for this paper yet.