Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

STLCCP: An Efficient Convex Optimization-based Framework for Signal Temporal Logic Specifications (2305.09441v2)

Published 16 May 2023 in eess.SY, cs.FL, cs.RO, and cs.SY

Abstract: Signal Temporal Logic (STL) is capable of expressing a broad range of temporal properties that controlled dynamical systems must satisfy. In the literature, both mixed-integer programming (MIP) and nonlinear programming (NLP) methods have been applied to solve optimal control problems with STL specifications. However, neither approach has succeeded in solving problems with complex long-horizon STL specifications within a realistic timeframe. This study proposes a new optimization framework, called \textit{STLCCP}, which explicitly incorporates several structures of STL to mitigate this issue. The core of our framework is a structure-aware decomposition of STL formulas, which converts the original program into a difference of convex (DC) programs. This program is then solved as a convex quadratic program sequentially, based on the convex-concave procedure (CCP). Our numerical experiments on several commonly used benchmarks demonstrate that this framework can effectively handle complex scenarios over long horizons, which have been challenging to address even using state-of-the-art optimization methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,” in Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, 2004, pp. 152–166.
  2. G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications for continuous-time signals,” Theoretical Computer Science, vol. 410, no. 42, pp. 4262–4291, 2009.
  3. Y. V. Pant, H. Abbas, and R. Mangharam, “Smooth operator: Control using the smooth robustness of temporal logic,” in IEEE Conference on Control Technology and Applications (CCTA), 2017, pp. 1235–1240.
  4. W. Hashimoto, K. Hashimoto, and S. Takai, “STL2vec: Signal temporal logic embeddings for control synthesis with recurrent neural networks,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5246–5253, 2022.
  5. Y. Gilpin, V. Kurtz, and H. Lin, “A smooth robustness measure of signal temporal logic for symbolic control,” IEEE Control Systems Letters, vol. 5, no. 1, pp. 241–246, 2021.
  6. T. Lipp and S. Boyd, “Variations and extension of the convex–concave procedure,” Optimization and Engineering, vol. 17, no. 2, pp. 263–287, 2016.
  7. X. Shen, S. Diamond, Y. Gu, and S. Boyd, “Disciplined convex-concave programming,” in IEEE Conference on Decision and Control (CDC), 2016, pp. 1009–1014.
  8. V. Kurtz and H. Lin, “Mixed-integer programming for signal temporal logic with fewer binary variables,” IEEE Control Systems Letters, vol. 6, pp. 2635–2640, 2022. Their source code is available at https://stlpy.readthedocs.io.
  9. S. Karaman and E. Frazzoli, “Vehicle routing problem with metric temporal logic specifications,” in IEEE Conference on Decision and Control (CDC), 2008, pp. 3953–3958.
  10. S. Karaman, R. G. Sanfelice, and E. Frazzoli, “Optimal control of mixed logical dynamical systems with linear temporal logic specifications,” in IEEE Conference on Decision and Control (CDC), 2008, pp. 2117–2122.
  11. V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-Vincentelli, and S. A. Seshia, “Model predictive control with signal temporal logic specifications,” in IEEE Conference on Decision and Control (CDC), 2014, pp. 81–87.
  12. L. Lindemann and D. V. Dimarogonas, “Robust control for signal temporal logic specifications using discrete average space robustness,” Automatica, vol. 101, pp. 377–387, 2019.
  13. N. Mehdipour, C. I. Vasile, and C. Belta, “Specifying user preferences using weighted signal temporal logic,” IEEE Control Systems Letters, vol. 5, no. 6, pp. 2006–2011, 2021.
  14. I. Haghighi, N. Mehdipour, E. Bartocci, and C. Belta, “Control from signal temporal logic specifications with smooth cumulative quantitative semantics,” in IEEE Conference on Decision and Control (CDC), 2019, pp. 4361–4366.
  15. D. Sun, J. Chen, S. Mitra, and C. Fan, “Multi-agent motion planning from signal temporal logic specifications,” IEEE Robotics and Automation Letters, 2022.
  16. F. Debrouwere, W. Van Loock, G. Pipeleers, Q. T. Dinh, M. Diehl, J. De Schutter, and J. Swevers, “Time-optimal path following for robots with convex–concave constraints using sequential convex programming,” IEEE Transactions on Robotics, vol. 29, no. 6, pp. 1485–1495, 2013.
  17. Q. Tran Dinh, S. Gumussoy, W. Michiels, and M. Diehl, “Combining convex–concave decompositions and linearization approaches for solving BMIs, with application to static output feedback,” IEEE Transactions on Automatic Control, vol. 57, no. 6, pp. 1377–1390, 2012.
  18. M. Cubuktepe, N. Jansen, S. Junges, J.-P. Katoen, and U. Topcu, “Convex optimization for parameter synthesis in MDPs,” IEEE Transactions on Automatic Control, vol. 67, pp. 6333–6348, 2021.
  19. Q. Wang, M. Chen, B. Xue, N. Zhan, and J.-P. Katoen, “Encoding inductive invariants as barrier certificates: Synthesis via difference-of-convex programming,” Information and Computation, vol. 289, p. 104965, 2022.
  20. M. Charitidou and D. V. Dimarogonas, “Signal temporal logic task decomposition via convex optimization,” IEEE Control Systems Letters, vol. 6, pp. 1238–1243, 2022.
  21. Y. Mao, B. Acikmese, P.-L. Garoche, and A. Chapoutot, “Successive convexification for optimal control with signal temporal logic specifications,” in ACM International Conference on Hybrid Systems: Computation and Control (HSCC), 2022, pp. 1–7.
  22. Y. Takayama, K. Hashimoto, and T. Ohtsuka, “Signal temporal logic meets convex-concave programming: A structure-exploiting SQP algorithm for STL specifications,” in IEEE Conference on Decision and Control (CDC), 2023, pp. 6855-6862.
  23. S. Sadraddini and C. Belta, “Formal synthesis of control strategies for positive monotone systems,” IEEE Transactions on Automatic Control, vol. 64, no. 2, pp. 480–495, 2019.
  24. ——, “Robust temporal logic model predictive control,” in Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 772–779, 2015.
  25. K. Leung, N. Aréchiga, and M. Pavone, “Backpropagation for parametric STL,” in IEEE Intelligent Vehicles Symposium (IV), pp. 185–192, 2019.
  26. B. K. Sriperumbudur and G. R. G. Lanckriet, “On the convergence of the concave-convex procedure,” in Advances in Neural Information Processing Systems (NIPS), vol. 22, 2009.
  27. S. Sadraddini, J. Rudan, and C. Belta, “Formal synthesis of distributed optimal traffic control policies,” in 8th International Conference on Cyber-Physical Systems (ICCPS), p. 15–24, 2017.
  28. K. Asadi and M. L. Littman, “An alternative softmax operator for reinforcement learning,” in International Conference on Machine Learning (ICML), vol. 70, pp. 243–252, 2017.
  29. S. Diamond and S. Boyd, “CVXPY: A Python-Embedded modeling language for convex optimization,” Journal of Machine Learning Research, vol. 17, 2016.
  30. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online]. Available: https://www.gurobi.com
  31. C. Belta and S. Sadraddini, “Formal methods for control synthesis: An optimization perspective,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 2, no. 1, pp. 115–140, 2019.
  32. P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-scale constrained optimization,” SIAM Review, vol. 47, pp. 99–131, 2005.
  33. S. Kim, K. Asadi, M. Littman, and G. Konidaris, “Deepmellow: Removing the need for a target network in deep Q-learning,” in International Joint Conference on Artificial Intelligence, 2019, pp. 2733–2739.
  34. B. Gao and L. Pavel, “On the properties of the softmax function with application in game theory and reinforcement learning,” arXiv:1704.00805, 2017.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yoshinari Takayama (2 papers)
  2. Kazumune Hashimoto (26 papers)
  3. Toshiyuki Ohtsuka (21 papers)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com