Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Word Dilution as Text Data Augmentation in Low-Resource Regime (2305.09287v2)

Published 16 May 2023 in cs.CL

Abstract: Data augmentation is widely used in text classification, especially in the low-resource regime where a few examples for each class are available during training. Despite the success, generating data augmentations as hard positive examples that may increase their effectiveness is under-explored. This paper proposes an Adversarial Word Dilution (AWD) method that can generate hard positive examples as text data augmentations to train the low-resource text classification model efficiently. Our idea of augmenting the text data is to dilute the embedding of strong positive words by weighted mixing with unknown-word embedding, making the augmented inputs hard to be recognized as positive by the classification model. We adversarially learn the dilution weights through a constrained min-max optimization process with the guidance of the labels. Empirical studies on three benchmark datasets show that AWD can generate more effective data augmentations and outperform the state-of-the-art text data augmentation methods. The additional analysis demonstrates that the data augmentations generated by AWD are interpretable and can flexibly extend to new examples without further training.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Junfan Chen (13 papers)
  2. Richong Zhang (47 papers)
  3. Zheyan Luo (2 papers)
  4. Chunming Hu (20 papers)
  5. Yongyi Mao (45 papers)
Citations (3)