Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kernel-based sensitivity analysis for (excursion) sets (2305.09268v3)

Published 16 May 2023 in math.ST and stat.TH

Abstract: In this paper, we aim to perform sensitivity analysis of set-valued models and, in particular, to quantify the impact of uncertain inputs on feasible sets, which are key elements in solving a robust optimization problem under constraints. While most sensitivity analysis methods deal with scalar outputs, this paper introduces a novel approach for performing sensitivity analysis with set-valued outputs. Our innovative methodology is designed for excursion sets, but is versatile enough to be applied to set-valued simulators, including those found in viability fields, or when working with maps like pollutant concentration maps or flood zone maps. We propose to use the Hilbert-Schmidt Independence Criterion (HSIC) with a kernel designed for set-valued outputs. After proposing a probabilistic framework for random sets, a first contribution is the proof that this kernel is characteristic, an essential property in a kernel-based sensitivity analysis context. To measure the contribution of each input, we then propose to use HSIC-ANOVA indices. With these indices, we can identify which inputs should be neglected (screening) and we can rank the others according to their influence (ranking). The estimation of these indices is also adapted to the set-valued outputs. Finally, we test the proposed method on three test cases of excursion sets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.