Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Size-stochastic Knapsack Online Contention Resolution Schemes (2305.08622v2)

Published 15 May 2023 in cs.GT

Abstract: Online contention resolution schemes (OCRSs) are effective rounding techniques for online stochastic combinatorial optimization problems. These schemes randomly and sequentially round a fractional solution to a relaxed problem that can be formulated in advance. In this study, we propose OCRSs for online stochastic generalized assignment problems. In the problem of our OCRSs, sequentially arriving items are packed into a single knapsack, and their sizes are revealed only after insertion. The goal of the problem is to maximize the acceptance probability, which is the smallest probability among the items being placed in the knapsack. Since the item sizes are unknown beforehand, a capacity overflow may occur. We consider two distinct settings: the hard constraint, where items that cause overflow are rejected, and the soft constraint setting, where such items are accepted. Under the hard constraint setting, we present an algorithm with an acceptance probability of $1/3$ and prove that no algorithm can achieve an acceptance probability greater than $3/7$. Under the soft constraint setting, we propose an algorithm with an acceptance probability of $1/2$ and demonstrate that this is best possible.

Summary

We haven't generated a summary for this paper yet.