Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generation of Kochen-Specker contextual sets in higher dimensions by dimensional upscaling whose complexity does not scale with dimension and their applications (2305.08267v3)

Published 14 May 2023 in quant-ph, math-ph, and math.MP

Abstract: Recently, handling of contextual sets, in particular Kochen-Specker (KS) sets, in higher dimensions has been given an increasing attention, both theoretically and experimentally. However, methods of their generation are diverse, not generally applicable in every dimension, and of exponential complexity. Therefore, we design a dimensional upscaling method, whose complexity does not scale with dimension. As a proof of principle we generate manageable-sized KS master sets in up to 27 dimensional spaces and show that well over 32 dimensions can be reached. From these master sets we obtain an ample number of smaller KS sets. We discuss three kinds of applications that work with KS sets in higher dimensions. We anticipate other applications of KS sets for quantum information processing that make use of large families of nonisomorphic KS sets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. S. D. Bartlett, Powered by magic, Nature 510, 345 (2014).
  2. A. Tavakoli and R. Uola, Measurement incompatibility and steering are necessary and sufficient for operational contextuality, Phys. Rev. Research 2, 013011 (2020).
  3. D. Saha, P. Horodecki, and M. Pawłowski, State independent contextuality advances one-way communication, New J. Phys. 21, 093057 (2019).
  4. S. Kochen and E. P. Specker, The problem of hidden variables in quantum mechanics, J. Math. Mech. 17, 59 (1967).
  5. A. Cabello, Converting contextuality into nonlocality, Phys. Rev. Lett. 127, 070401 (2021).
  6. R. Ramanathan, Y. Liu, and P. Horodecki, Large violations in Kochen Specker contextuality and their applications, New J. Phys. 24, 033035 (2022).
  7. S. Wehner, M. Christandl, and A. C. Doherty, Lower bound on the dimension of a quantum system given measured data, Phys. Rev. A 78, 062112 (2008).
  8. X. Zhan and L. Hu, Dimension-dependent noncontextuality inequalities with large contexts, Phys. Rev. A 104, 032208 (2021).
  9. M. Frembs, S. Roberts, and S. D. Bartlett, Contextuality as a resource for measurement-based quantum computation beyond qubits, New J. Phys. 20, 103011 (2018).
  10. M. Waegell and P. K. Aravind, Golay codes and quantum contextuality, Phys. Rev. A 106, 062421 (2022).
  11. M. Planat and M. Saniga, Five-qubit contextuality, noise-like distribution of distances between maximal bases and finite geometry, Phys. Lett. A 376, 3485 (2012).
  12. M. Waegell and P. K. Aravind, Parity proofs of the Kochen-Specker theorem based on the Lie algebra E8, J. Phys. A 48, 225301 (2015).
  13. M. Waegell and P. K. Aravind, Minimal complexity of Kochen-Specker sets does not scale with dimension, Phys. Rev. A 95, 050101 (2017), Supplemental Material https://journals.aps.org/ pra/supplemental/10.1103/PhysRevA.95.050101.
  14. M. Pavičić and N. D. Megill, Vector generation of quantum contextual sets in even dimensional Hilbert spaces, Entropy 20, 928 (2018).
  15. M. Pavičić, Hypergraph contextuality, Entropy 21(11), 1107 (2019).
  16. M. Pavičić and N. D. Megill, Automated generation of arbitrarily many Kochen-Specker and other contextual sets in odd dimensional Hilbert spaces, Phys. Rev. A 106, L060203 (2022).
  17. M. Pavičić, Quantum contextuality, Quantum 7, 953 (2023).
  18. J. Zimba and R. Penrose, On Bell non-locality without probabilities: More curious geometry, Stud. Hist. Phil. Sci. 24, 697 (1993).
  19. S. Matsuno, The construction of Kochen–Specker noncolourable sets in higher-dimensional space from corresponding sets in lower dimension: Modification of Cabello, Estebaranz and García-Alcaine’s method, J. Phys. A 40, 9507 (2007).
  20. A. Cabello, J. M. Estebaranz, and G. García-Alcaine, Recursive proof of the Bell-Kochen-Specker theorem in any dimension n>3𝑛3n>3italic_n > 3, Phys. Lett. A 339, 425 (2005).
  21. M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1, 169 (1981).
  22. M. Pavičić, N. D. Megill, and J.-P. Merlet, New Kochen-Specker sets in four dimensions, Phys. Lett. A 374, 2122 (2010).
  23. A. Peres, Two simple proofs of the Bell-Kochen-Specker theorem, J. Phys. A 24, L175 (1991).
  24. A. Cabello, J. M. Estebaranz, and G. García-Alcaine, Bell-Kochen-Specker theorem: A proof with 18 vectors, Phys. Lett. A 212, 183 (1996).
  25. M. Waegell and P. K. Aravind, Parity proofs of the Kochen-Specker theorem based on 24 rays of Peres, Found. Phys. 41, 1785 (2011).
  26. M. Pavičić and N. D. Megill, Vector generation of contextual sets, EPJ Web of Conferences 198, 00009 (2019) 198, 00009 (2019).
  27. P. Lisoněk, Kochen-Specker sets and Hadamard matrices, Theor. Comp. Sci. 800, 042101 (2019).
  28. H. Bechmann-Pasquinucci and W. Tittel, Quantum cryptography using larger alphabets, Phys. Rev. A 61, 062308 (2000).
  29. http://puh.srce.hr/s/Qegixzz2BdjYwFL.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets