Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gaussian Prior Reinforcement Learning for Nested Named Entity Recognition (2305.07266v1)

Published 12 May 2023 in cs.CL and cs.AI

Abstract: Named Entity Recognition (NER) is a well and widely studied task in natural language processing. Recently, the nested NER has attracted more attention since its practicality and difficulty. Existing works for nested NER ignore the recognition order and boundary position relation of nested entities. To address these issues, we propose a novel seq2seq model named GPRL, which formulates the nested NER task as an entity triplet sequence generation process. GPRL adopts the reinforcement learning method to generate entity triplets decoupling the entity order in gold labels and expects to learn a reasonable recognition order of entities via trial and error. Based on statistics of boundary distance for nested entities, GPRL designs a Gaussian prior to represent the boundary distance distribution between nested entities and adjust the output probability distribution of nested boundary tokens. Experiments on three nested NER datasets demonstrate that GPRL outperforms previous nested NER models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Yawen Yang (7 papers)
  2. Xuming Hu (120 papers)
  3. Fukun Ma (7 papers)
  4. Shu'ang Li (7 papers)
  5. Aiwei Liu (42 papers)
  6. Lijie Wen (58 papers)
  7. Philip S. Yu (592 papers)
Citations (5)