Gaining insights on anyon condensation and 1-form symmetry breaking across a topological phase transition in a deformed toric code model (2305.07063v3)
Abstract: We examine the condensation and confinement mechanisms exhibited by a deformed toric code model proposed in [Castelnovo and Chamon, Phys. Rev. B, 2008]. The model describes both sides of a phase transition from a topological phase to a trivial phase. Our findings reveal an unconventional confinement mechanism that governs the behavior of the toric code excitations within the trivial phase. Specifically, the confined magnetic charge can still be displaced without any energy cost, albeit only via the application of non-unitary operators that reduce the norm of the state. This peculiar phenomenon can be attributed to a previously known feature of the model: it maintains the non-trivial ground state degeneracy of the toric code throughout the transition. We describe how this degeneracy arises in both phases in terms of spontaneous symmetry breaking of a generalized (1-form) symmetry and explain why such symmetry breaking is compatible with the trivial phase. The present study implies the existence of subtle considerations that must be addressed in the context of recently posited connections between topological phases and broken higher-form symmetries.
- X. G. Wen, Vacuum degeneracy of chiral spin states in compactified space, Physical Review B 40(10), 7387 (1989), 10.1103/PhysRevB.40.7387.
- X. G. Wen, TOPOLOGICAL ORDERS IN RIGID STATES, International Journal of Modern Physics B 04(02), 239 (1990), 10.1142/S0217979290000139.
- X.-G. Wen, Topological Order: From Long-Range Entangled Quantum Matter to a Unified Origin of Light and Electrons, ISRN Condensed Matter Physics 2013, 1 (2013), 10.1155/2013/198710.
- D. C. Tsui, H. L. Stormer and A. C. Gossard, Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Physical Review Letters 48(22), 1559 (1982), 10.1103/PhysRevLett.48.1559.
- X. G. Wen and Q. Niu, Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces, Physical Review B 41(13), 9377 (1990), 10.1103/PhysRevB.41.9377.
- X.-G. Wen, Topological orders and edge excitations in fractional quantum hall states, Advances in Physics 44(5), 405 (1995), 10.1080/00018739500101566.
- Symmetry protected topological orders and the group cohomology of their symmetry group, Physical Review B 87(15), 155114 (2013), 10.1103/PhysRevB.87.155114.
- X. Chen, Z.-C. Gu and X.-G. Wen, Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order, Physical Review B 82(15), 155138 (2010), 10.1103/PhysRevB.82.155138.
- A. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303(1), 2 (2003), 10.1016/S0003-4916(02)00018-0.
- A. Mesaros and Y. Ran, Classification of symmetry enriched topological phases with exactly solvable models, Physical Review B 87(15), 155115 (2013), 10.1103/PhysRevB.87.155115.
- Topological quantum memory, Journal of Mathematical Physics 43(9), 4452 (2002), 10.1063/1.1499754.
- Non-Abelian anyons and topological quantum computation, Reviews of Modern Physics 80(3), 1083 (2008), 10.1103/RevModPhys.80.1083.
- Non-Abelian statistics and topological quantum information processing in 1D wire networks, Nature Physics 7(5), 412 (2011), 10.1038/nphys1915.
- B. M. Terhal, Quantum error correction for quantum memories, Reviews of Modern Physics 87(2), 307 (2015), 10.1103/RevModPhys.87.307.
- Quantum memories at finite temperature, Reviews of Modern Physics 88(4), 045005 (2016), 10.1103/RevModPhys.88.045005.
- Repeated quantum error detection in a surface code, Nature Physics 16(8), 875 (2020), 10.1038/s41567-020-0920-y.
- Realizing topologically ordered states on a quantum processor, Science 374(6572), 1237 (2021), 10.1126/science.abi8378.
- Condensate-induced transitions between topologically ordered phases, Physical Review B 79(4), 045316 (2009), 10.1103/PhysRevB.79.045316.
- F. Burnell, Anyon Condensation and Its Applications, Annual Review of Condensed Matter Physics 9(1), 307 (2018), 10.1146/annurev-conmatphys-033117-054154.
- Boson condensation in topologically ordered quantum liquids, Physical Review B 93(11), 115103 (2016), 10.1103/PhysRevB.93.115103.
- A. F. Bais, B. J. Schroers and J. K. Slingerland, Hopf symmetry breaking and confinement in (2+1)-dimensional gauge theory, Journal of High Energy Physics 2003(05), 068 (2003), 10.1088/1126-6708/2003/05/068.
- I. S. Eliëns, J. C. Romers and F. A. Bais, Diagrammatics for Bose condensation in anyon theories, Physical Review B 90(19), 195130 (2014), 10.1103/PhysRevB.90.195130.
- Z. Nussinov and G. Ortiz, Sufficient symmetry conditions for Topological Quantum Order, Proceedings of the National Academy of Sciences 106(40), 16944 (2009), 10.1073/pnas.0803726105.
- Z. Nussinov and G. Ortiz, A symmetry principle for topological quantum order, Annals of Physics 324(5), 977 (2009), 10.1016/j.aop.2008.11.002.
- Generalized global symmetries, Journal of High Energy Physics 2015(2), 172 (2015), 10.1007/JHEP02(2015)172, 1412.5148.
- X.-G. Wen, Emergent anomalous higher symmetries from topological order and from dynamical electromagnetic field in condensed matter systems, Physical Review B 99(20), 205139 (2019), 10.1103/PhysRevB.99.205139, 1812.02517.
- J. McGreevy, Generalized Symmetries in Condensed Matter, Annual Review of Condensed Matter Physics 14(1), 57 (2023), 10.1146/annurev-conmatphys-040721-021029.
- C. Castelnovo and C. Chamon, Quantum topological phase transition at the microscopic level, Physical Review B 77(5), 054433 (2008), 10.1103/PhysRevB.77.054433.
- Shadows of anyons and the entanglement structure of topological phases, Nature Communications 6(1), 8284 (2015), 10.1038/ncomms9284.
- Condensation-driven phase transitions in perturbed string nets, Physical Review B 96(15), 155127 (2017), 10.1103/PhysRevB.96.155127.
- Entanglement phases as holographic duals of anyon condensates, Physical Review B 95(23), 235119 (2017), 10.1103/PhysRevB.95.235119.
- Complete characterization of non-Abelian topological phase transitions and detection of anyon splitting with projected entangled pair states, Physical Review B 106(20), 205139 (2022), 10.1103/PhysRevB.106.205139.
- G. ’t Hooft, On the phase transition towards permanent quark confinement, Nuclear Physics B 138(1), 1 (1978), 10.1016/0550-3213(78)90153-0.
- Gapless Coulomb state emerging from a self-dual topological tensor-network state, Phys. Rev. Lett. 122(17), 176401 (2019), 10.1103/physrevlett.122.176401.
- M. H. Zarei and J. Abouie, Topological line in frustrated toric code models, Phys. Rev. B 104, 115141 (2021), 10.1103/PhysRevB.104.115141.
- Global entanglement in a topological quantum phase transition, Phys. Rev. A 105, 032438 (2022), 10.1103/PhysRevA.105.032438.
- E. Ardonne, P. Fendley and E. Fradkin, Topological order and conformal quantum critical points, Annals of Physics 310, 493 (2004), 10.1016/j.aop.2004.01.004.
- Dynamics at and near conformal quantum critical points, Physical Review B 83(12), 125114 (2011), 10.1103/PhysRevB.83.125114.
- Continuous Phase Transition without Gap Closing in Non-Hermitian Quantum Many-Body Systems, Physical Review Letters 125(26), 260601 (2020), 10.1103/PhysRevLett.125.260601.
- H. Bombin and M. A. Martin-Delgado, Family of non-Abelian Kitaev models on a lattice: Topological condensation and confinement, Physical Review B 78(11), 115421 (2008), 10.1103/PhysRevB.78.115421.
- Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance, Physical Review B 72(4), 045141 (2005), 10.1103/PhysRevB.72.045141.
- P. Bonderson and C. Nayak, Quasi-topological phases of matter and topological protection, Physical Review B 87(19), 195451 (2013), 10.1103/PhysRevB.87.195451.
- Exact emergent higher-form symmetries in bosonic lattice models, arXiv:2301.05261 (2023), 2301.05261.
- M. H. Zarei and M. Nobakht, Foliated order parameter in a fracton phase transition, Phys. Rev. B 106, 035101 (2022), 10.1103/PhysRevB.106.035101.
- Topological fracton quantum phase transitions by tuning exact tensor network states, Phys. Rev. Lett. 130, 216704 (2023), 10.1103/PhysRevLett.130.216704.
- Entanglement spectrum and boundary theories with projected entangled-pair states, Physical Review B 83(24), 245134 (2011), 10.1103/PhysRevB.83.245134.
- M. H. Zarei, Ising order parameter and topological phase transitions: Toric code in a uniform magnetic field, Physical Review B 100(12), 125159 (2019), 10.1103/PhysRevB.100.125159.
- R. Peierls, On Ising’s model of ferromagnetism, Mathematical Proceedings of the Cambridge Philosophical Society 32(3), 477 (1936), 10.1017/S0305004100019174.
- C. N. Yang, The Spontaneous Magnetization of a Two-Dimensional Ising Model, Physical Review 85(5), 808 (1952), 10.1103/PhysRev.85.808.
- B. Kastening, Simplified transfer matrix approach in the two-dimensional Ising model with various boundary conditions, Physical Review E 66(5), 057103 (2002), 10.1103/PhysRevE.66.057103.
- Exact partition functions of the Ising model on M ×\times× N planar lattices with periodic-aperiodic boundary conditions, Journal of Physics A: Mathematical and General 35(25), 304 (2002), 10.1088/0305-4470/35/25/304.