Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Cardinality Bound on the Information Bottleneck Representations is Tight (2305.07000v2)

Published 11 May 2023 in cs.IT and math.IT

Abstract: The information bottleneck (IB) method aims to find compressed representations of a variable $X$ that retain the most relevant information about a target variable $Y$. We show that for a wide family of distributions -- namely, when $Y$ is generated by $X$ through a Hamming channel, under mild conditions -- the optimal IB representations require an alphabet strictly larger than that of $X$. This implies that, despite several recent works, the cardinality bound first identified by Witsenhausen and Wyner in 1975 is tight. At the core of our finding is the observation that the IB function in this setting is not strictly concave, similar to the deterministic case, even though the joint distribution of $X$ and $Y$ is of full support. Finally, we provide a complete characterization of the IB function, as well as of the optimal representations for the Hamming case.

Citations (2)

Summary

We haven't generated a summary for this paper yet.