Neural Wave Functions for Superfluids (2305.06989v4)
Abstract: Understanding superfluidity remains a major goal of condensed matter physics. Here we tackle this challenge utilizing the recently developed Fermionic neural network (FermiNet) wave function Ansatz [D. Pfau et al., Phys. Rev. Res. 2, 033429 (2020).] for variational Monte Carlo calculations. We study the unitary Fermi gas, a system with strong, short-range, two-body interactions known to possess a superfluid ground state but difficult to describe quantitatively. We demonstrate key limitations of the FermiNet Ansatz in studying the unitary Fermi gas and propose a simple modification based on the idea of an antisymmetric geminal power singlet (AGPs) wave function. The new AGPs FermiNet outperforms the original FermiNet significantly in paired systems, giving results which are more accurate than fixed-node diffusion Monte Carlo and are consistent with experiment. We prove mathematically that the new Ansatz, which only differs from the original Ansatz by the method of antisymmetrization, is a strict generalization of the original FermiNet architecture, despite the use of fewer parameters. Our approach shares several advantages with the original FermiNet: the use of a neural network removes the need for an underlying basis set; and the flexibility of the network yields extremely accurate results within a variational quantum Monte Carlo framework that provides access to unbiased estimates of arbitrary ground-state expectation values. We discuss how the method can be extended to study other superfluids.
- A. J. Leggett, in Modern Trends in the Theory of Condensed Matter, edited by A. Pekalski and J. A. Przystawa (Springer Berlin Heidelberg, Berlin, Heidelberg, 1980) pp. 13–27.
- P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985).
- T. Papenbrock and G. F. Bertsch, Phys. Rev. C 59, 2052 (1999).
- S. Gandolfi, A. Gezerlis, and J. Carlson, Annu. Rev. Nucl. Part. Sci. 65, 303 (2015), https://doi.org/10.1146/annurev-nucl-102014-021957 .
- Y. Nishida and D. T. Son, Phys. Rev. Lett. 97, 050403 (2006).
- P. Nikolić and S. Sachdev, Phys. Rev. A 75, 033608 (2007).
- M. Randeria, J.-M. Duan, and L.-Y. Shieh, Phys. Rev. B 41, 327 (1990).
- M. Randeria, Nat. Phys. 6, 561 (2010).
- S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).
- J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106, 162 (1957).
- J. Carlson, S. Gandolfi, and A. Gezerlis, in Fifty Years of Nuclear BCS (WORLD SCIENTIFIC, 2013) pp. 348–359.
- A. J. Morris, P. López Ríos, and R. J. Needs, Phys. Rev. A 81, 033619 (2010).
- S. Y. Chang and V. R. Pandharipande, Phys. Rev. Lett. 95, 080402 (2005).
- A. Gezerlis and J. Carlson, Phys. Rev. C 81, 025803 (2010).
- M. M. Forbes, S. Gandolfi, and A. Gezerlis, Phys. Rev. Lett. 106, 235303 (2011).
- O. Goulko and M. Wingate, Phys. Rev. A 93, 053604 (2016).
- S. Jensen, C. N. Gilbreth, and Y. Alhassid, Phys. Rev. Lett. 125, 043402 (2020).
- L. Pisani, P. Pieri, and G. C. Strinati, Phys. Rev. B 105, 054505 (2022).
- G. Carleo and M. Troyer, Science 355, 602 (2017), https://www.science.org/doi/pdf/10.1126/science.aag2302 .
- K. Choo, T. Neupert, and G. Carleo, Phys. Rev. B 100, 125124 (2019).
- D. Luo and B. K. Clark, Phys. Rev. Lett. 122, 226401 (2019).
- J. Hermann, Z. Schätzle, and F. Noé, Nat. Chem. 12, 891 (2020).
- X. Li, Z. Li, and J. Chen, Nat. Commun. 13, 7895 (2022b).
- J. Bouchaud, A. Georges, and C. Lhuillier, J. Phys. France 49, 553 (1988).
- M. Casula and S. Sorella, J. Chem. Phys. 119, 6500 (2003), arXiv:cond-mat/0305169.
- M. Bajdich, Generalized pairing wave functions and nodal properties for electronic structure quantum monte carlo (2007), arXiv:0712.3066 [cond-mat.other] .
- J. Toulouse and C. J. Umrigar, J. Chem. Phys. 126, 084102 (2007), https://doi.org/10.1063/1.2437215 .
- K. Hornik, M. Stinchcombe, and H. White, Neural Netw. 2, 359 (1989).
- J. Martens and R. Grosse, in Proceedings of the 32nd International Conference on Machine Learning, Vol. 37, edited by F. Bach and D. Blei (PMLR, Lille, France, 2015) pp. 2408–2417.
- M. Casula, C. Attaccalite, and S. Sorella, J. Chem. Phys. 121, 7110 (2004), https://doi.org/10.1063/1.1794632 .
- Note that the idea of an AGPs/BCS FermiNet is very similar to the previous work by Luo and Clark [30], where they used the neural network backflow (NNB) wave function implemented on top of a Bogoliubov-de Gennes/BCS wave function to study lattice systems.
- G. Palkanoglou, F. K. Diakonos, and A. Gezerlis, Phys. Rev. C 102, 064324 (2020).
- L. P. Gorkov and T. K. Melik-Barkhudarov, Sov. Phys. JETP 13 (1961).
- C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).
- X. Li, J. c. v. Kolorenč, and L. Mitas, Phys. Rev. A 84, 023615 (2011).
- I. von Glehn, J. S. Spencer, and D. Pfau, arXiv:2211.13672 [physics.chem-ph] (2023).
- N. Gao and S. Günnemann, arXiv:2302.04168 [cs.LG] (2023).
- J. S. Spencer, D. Pfau, and contributors, FermiNet, http://github.com/deepmind/ferminet (2020b).
- A. Botev and J. Martens, KFAC-JAX, http://github.com/deepmind/kfac-jax (2022).