Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Intersectional Fairness in Machine Learning: Notions, Mitigation, and Challenges (2305.06969v2)

Published 11 May 2023 in cs.LG and cs.CY

Abstract: The widespread adoption of Machine Learning systems, especially in more decision-critical applications such as criminal sentencing and bank loans, has led to increased concerns about fairness implications. Algorithms and metrics have been developed to mitigate and measure these discriminations. More recently, works have identified a more challenging form of bias called intersectional bias, which encompasses multiple sensitive attributes, such as race and gender, together. In this survey, we review the state-of-the-art in intersectional fairness. We present a taxonomy for intersectional notions of fairness and mitigation. Finally, we identify the key challenges and provide researchers with guidelines for future directions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Usman Gohar (11 papers)
  2. Lu Cheng (73 papers)
Citations (22)