Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Convergence of Random Fourier--Jacobi Series in weighted $\mathrm{L}_{[-1,1]}^{\mathrm{p},(ζ,η)}$ Space (2305.06766v3)

Published 11 May 2023 in math.FA

Abstract: In the present paper, the random series $\sum\limits_{m=0}\infty c_m C_m(\varpi)q_m{(\zeta,\eta)}(u)$ in orthogonal Jacobi polynomials $q_m{(\zeta,\eta)}(u)$ is discussed. The scalars $c_m$ are Fourier--Jacobi coefficients of a function in the weighted space $\mathrm{L}{[-1,1]}\mathrm{p}(d\mu{\zeta,\eta}),\mathrm{p}>1.$ The random variables $C_m(\varpi)$ are chosen to be the Fourier--Jacobi coefficients of symmetric stable process $Y_{\zeta,\eta}(v,\varpi)$ of index $\chi \in [1,2]$ for $\zeta,\eta \geq 0,$ which are not independent. We prove that, under certain conditions on $\mathrm{p},\zeta$ and $\eta,$ the random Fourier--Jacobi series converges in probability to the stochastic integral \begin{equation*} \int_{-1}1 \mathfrak{g}(u,v)dY_{\zeta,\eta}(v,\varpi). \end{equation*} We also establish the existence of this integral in the sense of probability for $\mathfrak{g} \in \mathrm{L}{[-1,1]}\mathrm{p}(d\mu{\zeta,\eta}).$

Summary

We haven't generated a summary for this paper yet.