Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Object based Bayesian full-waveform inversion for shear elastography (2305.06646v1)

Published 11 May 2023 in math.NA, cs.CV, cs.NA, math.OC, physics.comp-ph, and physics.data-an

Abstract: We develop a computational framework to quantify uncertainty in shear elastography imaging of anomalies in tissues. We adopt a Bayesian inference formulation. Given the observed data, a forward model and their uncertainties, we find the posterior probability of parameter fields representing the geometry of the anomalies and their shear moduli. To construct a prior probability, we exploit the topological energies of associated objective functions. We demonstrate the approach on synthetic two dimensional tests with smooth and irregular shapes. Sampling the posterior distribution by Markov Chain Monte Carlo (MCMC) techniques we obtain statistical information on the shear moduli and the geometrical properties of the anomalies. General affine-invariant ensemble MCMC samplers are adequate for shapes characterized by parameter sets of low to moderate dimension. However, MCMC methods are computationally expensive. For simple shapes, we devise a fast optimization scheme to calculate the maximum a posteriori (MAP) estimate representing the most likely parameter values. Then, we approximate the posterior distribution by a Gaussian distribution found by linearization about the MAP point to capture the main mode at a low computational cost.

Summary

We haven't generated a summary for this paper yet.