Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study on the Robustness of the Segment Anything Model (SAM) (2305.06422v2)

Published 10 May 2023 in cs.CV

Abstract: The Segment Anything Model (SAM) is a foundation model for general image segmentation. Although it exhibits impressive performance predominantly on natural images, understanding its robustness against various image perturbations and domains is critical for real-world applications where such challenges frequently arise. In this study we conduct a comprehensive robustness investigation of SAM under diverse real-world conditions. Our experiments encompass a wide range of image perturbations. Our experimental results demonstrate that SAM's performance generally declines under perturbed images, with varying degrees of vulnerability across different perturbations. By customizing prompting techniques and leveraging domain knowledge based on the unique characteristics of each dataset, the model's resilience to these perturbations can be enhanced, addressing dataset-specific challenges. This work sheds light on the limitations and strengths of SAM in real-world applications, promoting the development of more robust and versatile image segmentation solutions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yuqing Wang (83 papers)
  2. Yun Zhao (63 papers)
  3. Linda Petzold (45 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.