Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FedPDD: A Privacy-preserving Double Distillation Framework for Cross-silo Federated Recommendation (2305.06272v2)

Published 9 May 2023 in cs.IR, cs.CR, cs.DC, and cs.LG

Abstract: Cross-platform recommendation aims to improve recommendation accuracy by gathering heterogeneous features from different platforms. However, such cross-silo collaborations between platforms are restricted by increasingly stringent privacy protection regulations, thus data cannot be aggregated for training. Federated learning (FL) is a practical solution to deal with the data silo problem in recommendation scenarios. Existing cross-silo FL methods transmit model information to collaboratively build a global model by leveraging the data of overlapped users. However, in reality, the number of overlapped users is often very small, thus largely limiting the performance of such approaches. Moreover, transmitting model information during training requires high communication costs and may cause serious privacy leakage. In this paper, we propose a novel privacy-preserving double distillation framework named FedPDD for cross-silo federated recommendation, which efficiently transfers knowledge when overlapped users are limited. Specifically, our double distillation strategy enables local models to learn not only explicit knowledge from the other party but also implicit knowledge from its past predictions. Moreover, to ensure privacy and high efficiency, we employ an offline training scheme to reduce communication needs and privacy leakage risk. In addition, we adopt differential privacy to further protect the transmitted information. The experiments on two real-world recommendation datasets, HetRec-MovieLens and Criteo, demonstrate the effectiveness of FedPDD compared to the state-of-the-art approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recommender system: A survey and new perspectives,” ACM Computing Surveys (CSUR), vol. 52, no. 1, pp. 1–38, 2019.
  2. Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and applications,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.
  3. P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles et al., “Advances and open problems in federated learning,” arXiv preprint arXiv:1912.04977, 2019.
  4. Y. Liu, Y. Kang, C. Xing, T. Chen, and Q. Yang, “A secure federated transfer learning framework,” IEEE Intelligent Systems, vol. 35, no. 4, pp. 70–82, 2020.
  5. F. Siwei and Y. Han, “Multi-participant multi-class vertical federated learning,” arXiv preprint arXiv:2001.11154, 2020.
  6. Y. Kang, Y. Liu, and T. Chen, “Fedmvt: Semi-supervised vertical federated learning with multiview training,” arXiv preprint arXiv:2008.10838, 2020.
  7. L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in NeurIPS, vol. 32, 2019.
  8. J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting gradients-how easy is it to break privacy in federated learning?” in NeurIPS, vol. 33, 2020, pp. 16 937–16 947.
  9. J. Sun, A. Li, B. Wang, H. Yang, H. Li, and Y. Chen, “Soteria: Provable defense against privacy leakage in federated learning from representation perspective,” in CVPR, 2021, pp. 9311–9319.
  10. M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 2016, pp. 308–318.
  11. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Artificial intelligence and statistics.   PMLR, 2017, pp. 1273–1282.
  12. S. Ying, “Shared mf: A privacy-preserving recommendation system,” arXiv preprint arXiv:2008.07759, 2020.
  13. L. Yang, B. Tan, B. Liu, V. W. Zheng, K. Chen, and Q. Yang, “Practical and secure federated recommendation with personalized masks,” arXiv preprint arXiv:2109.02464, 2021.
  14. D. Chai, L. Wang, K. Chen, and Q. Yang, “Secure federated matrix factorization,” IEEE Intelligent Systems, vol. 36, no. 5, pp. 11–20, 2020.
  15. E. Yang, Y. Huang, F. Liang, W. Pan, and Z. Ming, “Fcmf: Federated collective matrix factorization for heterogeneous collaborative filtering,” Knowledge-Based Systems, vol. 220, p. 106946, 2021.
  16. M. E. Eren, L. E. Richards, M. Bhattarai, R. Yus, C. Nicholas, and B. S. Alexandrov, “Fedsplit: One-shot federated recommendation system based on non-negative joint matrix factorization and knowledge distillation,” arXiv preprint arXiv:2205.02359, 2022.
  17. L. Minto, M. Haller, B. Livshits, and H. Haddadi, “Stronger privacy for federated collaborative filtering with implicit feedback,” in Fifteenth ACM Conference on Recommender Systems, 2021, pp. 342–350.
  18. M. Ammad-Ud-Din, E. Ivannikova, S. A. Khan, W. Oyomno, Q. Fu, K. E. Tan, and A. Flanagan, “Federated collaborative filtering for privacy-preserving personalized recommendation system,” arXiv preprint arXiv:1901.09888, 2019.
  19. W. Li, Q. Xia, J. Deng, H. Cheng, J. Liu, K. Xue, Y. Cheng, and S.-T. Xia, “Semi-supervised cross-silo advertising with partial knowledge transfer,” arXiv preprint arXiv:2205.15987, 2022.
  20. G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv preprint arXiv:1503.02531, 2015.
  21. S. You, C. Xu, C. Xu, and D. Tao, “Learning from multiple teacher networks,” in Proceedings of the 23rd ACM SIGKDD, 2017, pp. 1285–1294.
  22. D. Li and J. Wang, “Fedmd: Heterogenous federated learning via model distillation,” arXiv preprint arXiv:1910.03581, 2019.
  23. T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation for robust model fusion in federated learning,” NeurIPS, vol. 33, pp. 2351–2363, 2020.
  24. C. He, M. Annavaram, and S. Avestimehr, “Group knowledge transfer: Federated learning of large cnns at the edge,” NeurIPS, vol. 33, pp. 14 068–14 080, 2020.
  25. X. Gong, A. Sharma, S. Karanam, Z. Wu, T. Chen, D. Doermann, and A. Innanje, “Preserving privacy in federated learning with ensemble cross-domain knowledge distillation,” in AAAI, vol. 36, no. 11, 2022, pp. 11 891–11 899.
  26. Q. Li, B. He, and D. Song, “Practical one-shot federated learning for cross-silo setting,” arXiv preprint arXiv:2010.01017, vol. 1, no. 3, 2020.
  27. J.-H. Ahn, O. Simeone, and J. Kang, “Cooperative learning via federated distillation over fading channels,” in IEEE ICASSP.   IEEE, 2020, pp. 8856–8860.
  28. Z. Allen-Zhu and Y. Li, “Towards understanding ensemble, knowledge distillation and self-distillation in deep learning,” arXiv preprint arXiv:2012.09816, 2020.
  29. N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar, “Semi-supervised knowledge transfer for deep learning from private training data,” arXiv preprint arXiv:1610.05755, 2016.
  30. B. Balle and Y. Wang, “Improving the gaussian mechanism for differential privacy: Analytical calibration and optimal denoising,” in ICML.   PMLR, 2018, pp. 394–403.
  31. C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analysis,” in Theory of cryptography conference.   Springer, 2006, pp. 265–284.
  32. C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy,” Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407, 2014.
  33. C. Dwork and J. Lei, “Differential privacy and robust statistics,” in Proceedings of the forty-first annual ACM symposium on Theory of computing, 2009, pp. 371–380.
  34. H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “Deepfm: a factorization-machine based neural network for ctr prediction,” arXiv preprint arXiv:1703.04247, 2017.
  35. T. G. Dietterich et al., “Ensemble learning,” The handbook of brain theory and neural networks, vol. 2, no. 1, pp. 110–125, 2002.
  36. R. Yang, J. Tian, and Y. Zhang, “Regularized mutual learning for personalized federated learning,” in Proceedings of The 13th Asian Conference on Machine Learning, vol. 157.   PMLR, 17–19 Nov 2021, pp. 1521–1536.
  37. Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep mutual learning,” in CVPR, 2018.
  38. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Sheng Wan (10 papers)
  2. Dashan Gao (20 papers)
  3. Hanlin Gu (33 papers)
  4. Daning Hu (1 paper)
Citations (5)

Summary

We haven't generated a summary for this paper yet.