Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Quantum Support Vector Machines through Variational Kernel Training (2305.06063v2)

Published 10 May 2023 in quant-ph and cs.LG

Abstract: Quantum machine learning (QML) has witnessed immense progress recently, with quantum support vector machines (QSVMs) emerging as a promising model. This paper focuses on the two existing QSVM methods: quantum kernel SVM (QK-SVM) and quantum variational SVM (QV-SVM). While both have yielded impressive results, we present a novel approach that synergizes the strengths of QK-SVM and QV-SVM to enhance accuracy. Our proposed model, quantum variational kernel SVM (QVK-SVM), leverages the quantum kernel and quantum variational algorithm. We conducted extensive experiments on the Iris dataset and observed that QVK-SVM outperforms both existing models in terms of accuracy, loss, and confusion matrix indicators. Our results demonstrate that QVK-SVM holds tremendous potential as a reliable and transformative tool for QML applications. Hence, we recommend its adoption in future QML research endeavors.

Citations (12)

Summary

We haven't generated a summary for this paper yet.