Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Whittaker categories of quasi-reductive Lie superalgebras and principal finite W-superalgebras (2305.05550v1)

Published 9 May 2023 in math.RT

Abstract: We study the Whittaker category $\mathcal N(\zeta)$ of the Lie superalgebra $\mathfrak g$ for an arbitrary character $\zeta$ of the even subalgebra of the nilpotent radical associated with a triangular decomposition of $\mathfrak g$. We prove that the Backelin functor from either the integral subcategory or any strongly typical block of the BGG category to the Whittaker category sends irreducible modules to irreducible modules or zero. The category $\mathcal N(\zeta)$ provides a suitable framework for studying finite $W$-superalgebras associated with an even principal nilpotent element. For the periplectic Lie superalgebras $\mathfrak{p}(n)$, we formulate the principal finite $W$-superalgebras $W_\zeta$ and establish a Skryabin-type equivalence. For a basic classical and a strange Lie superalgebras, we prove that the category of finite-dimensional modules over a given principal finite $W$-superalgebra $W_\zeta$ is equivalent to $\mathcal N(\zeta)$ under the Skryabin equivalence, for a non-singular character $\zeta$. As a consequence, we give a super analogue of Soergel's Struktursatz for a certain Whittaker functor from the integral BGG category $\mathcal O$ to the category of finite-dimensional modules over $W_\zeta$.

Summary

We haven't generated a summary for this paper yet.