Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CIT-EmotionNet: CNN Interactive Transformer Network for EEG Emotion Recognition (2305.05548v1)

Published 7 May 2023 in eess.SP and cs.LG

Abstract: Emotion recognition using Electroencephalogram (EEG) signals has emerged as a significant research challenge in affective computing and intelligent interaction. However, effectively combining global and local features of EEG signals to improve performance in emotion recognition is still a difficult task. In this study, we propose a novel CNN Interactive Transformer Network for EEG Emotion Recognition, known as CIT-EmotionNet, which efficiently integrates global and local features of EEG signals. Initially, we convert raw EEG signals into spatial-frequency representations, which serve as inputs. Then, we integrate Convolutional Neural Network (CNN) and Transformer within a single framework in a parallel manner. Finally, we design a CNN interactive Transformer module, which facilitates the interaction and fusion of local and global features, thereby enhancing the model's ability to extract both types of features from EEG spatial-frequency representations. The proposed CIT-EmotionNet outperforms state-of-the-art methods, achieving an average recognition accuracy of 98.57\% and 92.09\% on two publicly available datasets, SEED and SEED-IV, respectively.

Citations (2)

Summary

We haven't generated a summary for this paper yet.