Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Exploration into the Performance of Unsupervised Cross-Task Speech Representations for "In the Wild'' Edge Applications (2305.05443v1)

Published 9 May 2023 in eess.AS and cs.SD

Abstract: Unsupervised speech models are becoming ubiquitous in the speech and machine learning communities. Upstream models are responsible for learning meaningful representations from raw audio. Later, these representations serve as input to downstream models to solve a number of tasks, such as keyword spotting or emotion recognition. As edge speech applications start to emerge, it is important to gauge how robust these cross-task representations are on edge devices with limited resources and different noise levels. To this end, in this study we evaluate the robustness of four different versions of HuBERT, namely: base, large, and extra-large versions, as well as a recent version termed Robust-HuBERT. Tests are conducted under different additive and convolutive noise conditions for three downstream tasks: keyword spotting, intent classification, and emotion recognition. Our results show that while larger models can provide some important robustness to environmental factors, they may not be applicable to edge applications. Smaller models, on the other hand, showed substantial accuracy drops in noisy conditions, especially in the presence of room reverberation. These findings suggest that cross-task speech representations are not yet ready for edge applications and innovations are still needed.

Citations (2)

Summary

We haven't generated a summary for this paper yet.