Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iterates of polynomials over $\F_q(t)$ and their Galois groups (2305.05380v2)

Published 9 May 2023 in math.NT

Abstract: A conjecture of Odoni stated over Hilbertian fields $K$ of characteristic zero asserts that for every positive integer $d$, there exists a polynomial $f\in K[x]$ of degree $d$ such that for every positive integer $n$, each iterate $f{\circ n}$ of $f$ is irreducible and the Galois group of the splitting field of $f{\circ n}$ is isomorphic to $[S_d]{n}$, the $n$ folded iterated wreath product of the symmetric group $S_{d}$. We prove an analogue this conjecture over $\F_q(t)$, the field of rational functions in $t$ over a finite field $\F_q$ of characteristic $p>0$. We present some examples and see that most polynomials in $\F_q[t][x]$ satisfy these conditions.

Summary

We haven't generated a summary for this paper yet.