Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Feasibility Study on Indoor Localization and Multi-person Tracking Using Sparsely Distributed Camera Network with Edge Computing (2305.05062v2)

Published 8 May 2023 in cs.CV and cs.AI

Abstract: Camera-based activity monitoring systems are becoming an attractive solution for smart building applications with the advances in computer vision and edge computing technologies. In this paper, we present a feasibility study and systematic analysis of a camera-based indoor localization and multi-person tracking system implemented on edge computing devices within a large indoor space. To this end, we deployed an end-to-end edge computing pipeline that utilizes multiple cameras to achieve localization, body orientation estimation and tracking of multiple individuals within a large therapeutic space spanning $1700m2$, all while maintaining a strong focus on preserving privacy. Our pipeline consists of 39 edge computing camera systems equipped with Tensor Processing Units (TPUs) placed in the indoor space's ceiling. To ensure the privacy of individuals, a real-time multi-person pose estimation algorithm runs on the TPU of the computing camera system. This algorithm extracts poses and bounding boxes, which are utilized for indoor localization, body orientation estimation, and multi-person tracking. Our pipeline demonstrated an average localization error of 1.41 meters, a multiple-object tracking accuracy score of 88.6\%, and a mean absolute body orientation error of 29\degree. These results shows that localization and tracking of individuals in a large indoor space is feasible even with the privacy constrains.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. A. Haque, M. Guo, A. Alahi, S. Yeung, Z. Luo, A. Rege, J. Jopling, L. Downing, W. Beninati, A. Singh, T. Platchek, A. Milstein, and L. Fei-Fei, “Towards vision-based smart hospitals: a system for tracking and monitoring hand hygiene compliance,” in Machine Learning for Healthcare Conference.   PMLR, 2017, pp. 75–87.
  2. A. C. Yang, N. Lau, and J. C. Ho, “The role of bedroom privacy in social interaction among elderly residents in nursing homes: An exploratory case study of hong kong,” Sensors, vol. 20, no. 15, p. 4101, 2020.
  3. P. E. Lopez-de Teruel, F. J. Garcia, O. Canovas, R. Gonzalez, and J. A. Carrasco, “Human behavior monitoring using a passive indoor positioning system: a case study in a sme,” Procedia Computer Science, vol. 110, pp. 182–189, 2017.
  4. O. Dogan, J. Bayo-Monton, C. Fernandez-Llatas, and B. Oztaysi, “Analyzing of gender behaviors from paths using process mining: A shopping mall application,” Sensors, vol. 19, no. 3, p. 557, 2019.
  5. N. K. Vuong, S. Chan, and C. T. Lau, “Automated detection of wandering patterns in people with dementia,” Gerontechnology, vol. 12, no. 3, pp. 127–147, 2014.
  6. I. cheol Jeong, D. Bychkov, S. Hiser, J. D. Kreif, L. M. Klein, E. H. Hoyer, and P. C. Searson, “Using a real-time location system for assessment of patient ambulation in a hospital setting,” Archives of Physical Medicine and Rehabilitation, vol. 98, no. 7, pp. 1366–1373, 2017.
  7. T. Van Haute, E. De Poorter, P. Crombez, F. Lemic, V. Handziski, N. Wirström, A. Wolisz, T. Voigt, and I. Moerman, “Performance analysis of multiple indoor positioning systems in a healthcare environment,” International Journal of Health Geographics, vol. 15, no. 1, pp. 1–15, 2016.
  8. S. Yoo, S. Kim, E. Kim, E. Jung, K. Lee, and H. Hwang, “Real-time location system-based asset tracking in the healthcare field: lessons learned from a feasibility study,” BMC Medical Informatics and Decision Making, vol. 18, no. 1, pp. 1–10, 2018.
  9. Y. Dai, Z. Hu, S. Zhang, and L. Liu, “A survey of detection-based video multi-object tracking,” Displays, p. 102317, 2022.
  10. E. S. dos Reis, L. A. Seewald, R. S. Antunes, V. F. Rodrigues, R. da Rosa Righi, C. A. da Costa, L. G. da Silveira Jr, B. Eskofier, A. Maier, T. Horz et al., “Monocular multi-person pose estimation: A survey,” Pattern Recognition, vol. 118, p. 108046, 2021.
  11. T. Tsai, C. Chang, and S. Chen, “Vision based indoor positioning for intelligent buildings,” in 2016 2nd International Conference on Intelligent Green Building and Smart Grid (IGBSG).   IEEE, 2016, pp. 1–4.
  12. A. Cosma, I. E. Radoi, and V. Radu, “Camloc: Pedestrian location estimation through body pose estimation on smart cameras,” in 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN).   IEEE, 2019, pp. 1–8.
  13. Z. Luo, J. Hsieh, N. Balachandar, S. Yeung, G. Pusiol, J. Luxenberg, G. Li, L. Li, N. L. Downing, A. Milstein, and L. Fei-Fei, “Computer vision-based descriptive analytics of seniors’ daily activities for long-term health monitoring,” Machine Learning for Healthcare (MLHC), vol. 2, no. 1, 2018.
  14. D. Xue, A. Sayana, E. Darke, K. Shen, J. Hsieh, Z. Luo, L. Li, N. L. Downing, A. Milstein, and L. Fei-Fei, “Vision-based gait analysis for senior care,” arXiv preprint arXiv:1812.00169, 2018.
  15. X. Jin, L. Li, F. Dang, X. Chen, and Y. Liu, “A survey on edge computing for wearable technology,” Digital Signal Processing, vol. 125, p. 103146, 2022.
  16. P. B. Suresha, C. Hegde, Z. Jiang, and G. D. Clifford, “An edge computing and ambient data capture system for clinical and home environments,” Sensors, vol. 22, no. 7, p. 2511, 2022.
  17. J. Barthélemy, N. Verstaevel, H. Forehead, and P. Perez, “Edge-computing video analytics for real-time traffic monitoring in a smart city,” Sensors, vol. 19, no. 9, p. 2048, 2019.
  18. G. Papandreou, T. Zhu, L. Chen, S. Gidaris, J. Tompson, and K. Murphy, “Personlab: Person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 269–286.
  19. T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.   Springer, 2014, pp. 740–755.
  20. X. Li, K. Wang, W. Wang, and Y. Li, “A multiple object tracking method using kalman filter,” in The 2010 IEEE international conference on information and automation.   IEEE, 2010, pp. 1862–1866.
  21. R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 03 1960.
  22. W. Chan and F. Hsiao, “Implementation of the rauch-tung-striebel smoother for sensor compatibility correction of a fixed-wing unmanned air vehicle,” Sensors, vol. 11, no. 4, pp. 3738–3764, 2011.
  23. M. Sun, L. Zhang, Y. Liu, X. Miao, and X. Ding, “See-your-room: Indoor localization with camera vision,” in Proceedings of the ACM turing celebration conference-China, 2019, pp. 1–5.
  24. C. Wu, Y. Chen, J. Luo, C. Su, A. Dawane, B. Hanzra, Z. Deng, B. Liu, J. Z. Wang, and C. Kuo, “Mebow: Monocular estimation of body orientation in the wild,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3451–3461.
  25. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–1334, 2000.
  26. H. W. Kuhn, “The hungarian method for the assignment problem,” Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.
  27. K. Bernardin, A. Elbs, and R. Stiefelhagen, “Multiple object tracking performance metrics and evaluation in a smart room environment,” in Sixth IEEE International Workshop on Visual Surveillance, in conjunction with ECCV, vol. 90, no. 91.   Citeseer, 2006.
  28. P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth, K. Schindler, and L. Leal-Taixé, “Mot20: A benchmark for multi object tracking in crowded scenes,” arXiv preprint arXiv:2003.09003, 2020.
  29. R. C. Browning, E. A. Baker, J. A. Herron, and R. Kram, “Effects of obesity and sex on the energetic cost and preferred speed of walking,” Journal of Applied Physiology, vol. 100, no. 2, pp. 390–398, 2006.
  30. B. J. Mohler, W. B. Thompson, S. H. Creem-Regehr, H. L. Pick, and W. H. Warren, “Visual flow influences gait transition speed and preferred walking speed,” Experimental Brain Research, vol. 181, no. 2, pp. 221–228, 2007.
  31. R. V. Levine and A. Norenzayan, “The pace of life in 31 countries,” Journal of Cross-cultural Psychology, vol. 30, no. 2, pp. 178–205, 1999.
  32. D. Yu, H. Xiong, Q. Xu, J. Wang, and K. Li, “Continuous pedestrian orientation estimation using human keypoints,” in 2019 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2019, pp. 1–5.
  33. M. Andriluka, S. Roth, and B. Schiele, “Monocular 3d pose estimation and tracking by detection,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.   Ieee, 2010, pp. 623–630.
  34. M. Lindh-Rengifo, S. B. Jonasson, S. Ullén, E. Stomrud, S. Palmqvist, N. Mattsson-Carlgren, O. Hansson, and M. H. Nilsson, “Components of gait in people with and without mild cognitive impairment,” Gait & Posture, vol. 93, pp. 83–89, 2022.
  35. H. W. Lach, B. E. Harrison, and S. Phongphanngam, “Falls and fall prevention in older adults with early-stage dementia: an integrative review,” Research in Gerontological Nursing, vol. 10, no. 3, pp. 139–148, 2017.
  36. G. Allali and J. Verghese, “Management of gait changes and fall risk in mci and dementia,” Current Treatment Options in Neurology, vol. 19, pp. 1–18, 2017.
  37. B. Lee, M. Lee, P. Zhang, A. Tessier, and A. Khan, “An empirical study of how socio-spatial formations are influenced by interior elements and displays in an office context,” Proceedings of the ACM on Human-Computer Interaction, vol. 3, no. CSCW, pp. 1–26, 2019.
  38. A. Cox, J. Loebach, and S. Little, “Understanding the nature play milieu: using behavior mapping to investigate children’s activities in outdoor play spaces,” Children, Youth and Environments, vol. 28, no. 2, pp. 232–261, 2018.
  39. T. Ballendat, N. Marquardt, and S. Greenberg, “Proxemic interaction: designing for a proximity and orientation-aware environment,” in ACM International Conference on Interactive Tabletops and Surfaces, 2010, pp. 121–130.
  40. E. T. Hall, “A system for the notation of proxemic behavior,” American Anthropologist, vol. 65, no. 5, pp. 1003–1026, 1963.
  41. M. Danninger, R. Vertegaal, D. P. Siewiorek, and A. Mamuji, “Using social geometry to manage interruptions and co-worker attention in office environments,” in Proceedings of Graphics Interface 2005.   Citeseer, 2005, pp. 211–218.
  42. A. Kendon, “Spatial organization in social encounters: The f-formation system,” Conducting Interaction: Patterns of Behavior in Focused Encounters, 1990.
Citations (4)

Summary

We haven't generated a summary for this paper yet.