Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RSC-VAE: Recoding Semantic Consistency Based VAE for One-Class Novelty Detection (2305.04275v1)

Published 7 May 2023 in cs.CV and cs.AI

Abstract: In recent years, there is an increasing interests in reconstruction based generative models for image One-Class Novelty Detection, most of which only focus on image-level information. While in this paper, we further exploit the latent space of Variational Auto-encoder (VAE), a typical reconstruction based model, and we innovatively divide it into three regions: Normal/Anomalous/Unknown-semantic-region. Based on this hypothesis, we propose a new VAE architecture, Recoding Semantic Consistency Based VAE (RSC-VAE), combining VAE with recoding mechanism and constraining the semantic consistency of two encodings. We come up with three training modes of RSC-VAE: 1. One-Class Training Mode, alleviating False Positive problem of normal samples; 2. Distributionally-Shifted Training Mode, alleviating False Negative problem of anomalous samples; 3. Extremely-Imbalanced Training Mode, introducing a small number of anomalous samples for training to enhance the second mode. The experimental results on multiple datasets demonstrate that our mechanism achieves state-of-the-art performance in various baselines including VAE.

Summary

We haven't generated a summary for this paper yet.