Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Provable Identifiability of Two-Layer ReLU Neural Networks via LASSO Regularization (2305.04267v1)

Published 7 May 2023 in cs.LG, math.ST, and stat.TH

Abstract: LASSO regularization is a popular regression tool to enhance the prediction accuracy of statistical models by performing variable selection through the $\ell_1$ penalty, initially formulated for the linear model and its variants. In this paper, the territory of LASSO is extended to two-layer ReLU neural networks, a fashionable and powerful nonlinear regression model. Specifically, given a neural network whose output $y$ depends only on a small subset of input $\boldsymbol{x}$, denoted by $\mathcal{S}{\star}$, we prove that the LASSO estimator can stably reconstruct the neural network and identify $\mathcal{S}{\star}$ when the number of samples scales logarithmically with the input dimension. This challenging regime has been well understood for linear models while barely studied for neural networks. Our theory lies in an extended Restricted Isometry Property (RIP)-based analysis framework for two-layer ReLU neural networks, which may be of independent interest to other LASSO or neural network settings. Based on the result, we advocate a neural network-based variable selection method. Experiments on simulated and real-world datasets show promising performance of the variable selection approach compared with existing techniques.

Citations (2)

Summary

We haven't generated a summary for this paper yet.