Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random Turán theorem for expansions of spanning subgraphs of tight trees (2305.04193v3)

Published 7 May 2023 in math.CO

Abstract: The $r$-expansion of a $k$-uniform hypergraph $H$, denoted by $H{(+r)}$, is an $r$-uniform hypergraph obtained by enlarging each $k$-edge of $H$ with a set of $r-k$ vertices of degree one. The random Tur\'an number $\mathrm{ex}(Gr_{n,p},H)$ is the maximum number of edges in an $H$-free subgraph of $Gr_{n,p}$, where $Gr_{n,p}$ is the Erd\H{o}s-R\'enyi random $r$-graph with parameter $p$. In this paper, we prove an upper bound for $\mathrm{ex}(Gr_{n,p},H)$ when $H$ belongs to a large family of $r$-partite $r$-graphs: the $r$-expansion of spanning subgraphs of tight trees. This upper bound is essentially tight for at least the following two families of hypergraphs. 1. Our upper bounds are essentially tight for expansions of $K{k-1}_{k}$, the complete $(k-1)$-graph on $k$ vertices. The proof of the lower bound makes use of a recent construction of Gowers and Janzer generalizing the famous Ruzsa-Szemer\"edi construction. In particular, when $k=3$, this answers a question of the current author, Spiro and Verstra\"ete concerning the random Tur\'an number of linear triangle. 2. Let $T$ be a tight tree such that the intersection of all edges of $T$ is empty. Simple construction shows that the upper bounds we have for expansions of $T$ are essentially tight. The main technical contribution of this paper is a new way to obtain balanced supersaturation results for expansions of hypergraphs: we combine two ideas, one of Mubayi-Yepremyan and another of Balogh-Narayanan-Skokan, via codegree dichotomy. We note that neither of these two ideas alone would be enough to recover results in this paper.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Independent sets in hypergraphs. Journal of the American Mathematical Society, 28(3):669–709, 2015.
  2. The method of hypergraph containers. In Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018, pages 3059–3092. World Scientific, 2018.
  3. The number of hypergraphs without linear cycles. Journal of Combinatorial Theory, Series B, 134:309–321, 2019.
  4. J. Balogh and W. Samotij. The number of k s, t-free graphs. Journal of the London Mathematical Society, 83(2):368–388, 2011.
  5. D. Conlon and W. T. Gowers. Combinatorial theorems in sparse random sets. Annals of Mathematics, pages 367–454, 2016.
  6. The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. Graphs Comb., 2(1):113–121, 1986.
  7. P. Erdos and M. Simoinovits. A limit theorem in graph theory. 1966.
  8. P. Erdös and A. H. Stone. On the structure of linear graphs. 1946.
  9. Supersaturated sparse graphs and hypergraphs. International Mathematics Research Notices, 2020(2):378–402, 2020.
  10. Z. Füredi and M. Simonovits. The history of degenerate (bipartite) extremal graph problems. Erdős Centennial, pages 169–264, 2013.
  11. W. Gowers and B. Janzer. Generalizations of the ruzsa–szemerédi and rainbow turán problems for cliques. Combinatorics, Probability and Computing, 30(4):591–608, 2021.
  12. Turán’s extremal problem in random graphs: Forbidding even cycles. Journal of Combinatorial Theory, Series B, 64(2):273–287, 1995.
  13. T. Jiang and S. Longbrake. Balanced supersaturation and turan numbers in random graphs. arXiv preprint arXiv:2208.10572, 2022.
  14. P. Keevash. Hypergraph turan problems. Surveys in combinatorics, 392:83–140, 2011.
  15. On k 4-free subgraphs of random graphs. Combinatorica, 17(2):173–213, 1997.
  16. R. Morris and D. Saxton. The number of c2⁢lsubscript𝑐2𝑙c_{2l}italic_c start_POSTSUBSCRIPT 2 italic_l end_POSTSUBSCRIPT-free graphs. Advances in Mathematics, 298:534–580, 2016.
  17. D. Mubayi and J. Verstraëte. A survey of turán problems for expansions. Recent trends in combinatorics, pages 117–143, 2016.
  18. D. Mubayi and L. Wang. The number of triple systems without even cycles. Combinatorica, pages 679–704, 2019.
  19. D. Mubayi and L. Yepremyan. Random turán theorem for hypergraph cycles. arXiv preprint arXiv:2007.10320, 2020.
  20. D. Mubayi and L. Yepremyan. On the random turán number of linear cycles. arXiv preprint arXiv:2304.15003, 2023.
  21. B. Nagle and V. Rödl. The asymptotic number of triple systems not containing a fixed one. Discrete Mathematics, 235(1-3):271–290, 2001.
  22. Extremal hypergraph problems and the regularity method. In Topics in Discrete Mathematics: Dedicated to Jarik Nešetřil on the Occasion of his 60th Birthday, pages 247–278. Springer, 2006.
  23. J. Nie. Turán theorems for even cycles in random hypergraph. Journal of Combinatorial Theory, Series B, 167:23–54, 2024.
  24. J. Nie and S. Spiro. Sidorenko hypergraphs and random tur\\\backslash\’an numbers. arXiv preprint arXiv:2309.12873, 2023.
  25. Triangle-free subgraphs of hypergraphs. Graphs and Combinatorics, 37:2555–2570, 2021.
  26. Ramsey properties of random k-partite, k-uniform hypergraphs. SIAM Journal on Discrete Mathematics, 21(2):442–460, 2007.
  27. V. Rödl and M. Schacht. Extremal results in random graphs. Springer, 2013.
  28. I. Z. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles. Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai, 18:939–945, 1978.
  29. D. Saxton and A. Thomason. Hypergraph containers. Inventiones mathematicae, 201(3):925–992, 2015.
  30. M. Schacht. Extremal results for random discrete structures. Annals of Mathematics, pages 333–365, 2016.
  31. S. Spiro. Random polynomial graphs for random tur\\\backslash\’an problems. arXiv preprint arXiv:2212.08050, 2022.
  32. S. Spiro and J. Verstraëte. Relative turán problems for uniform hypergraphs. SIAM Journal on Discrete Mathematics, 35(3):2170–2191, 2021.
  33. S. Spiro and J. Verstraëte. Counting hypergraphs with large girth. Journal of Graph Theory, 100(3):543–558, 2022.
  34. P. Turán. On an extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok, 48:436–452, 1941.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com