Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
29 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
469 tokens/sec
Kimi K2 via Groq Premium
210 tokens/sec
2000 character limit reached

Category-Oriented Representation Learning for Image to Multi-Modal Retrieval (2305.03972v4)

Published 6 May 2023 in cs.IR

Abstract: The rise of multi-modal search requests from users has highlighted the importance of multi-modal retrieval (i.e. image-to-text or text-to-image retrieval), yet the more complex task of image-to-multi-modal retrieval, crucial for many industry applications, remains under-explored. To address this gap and promote further research, we introduce and define the concept of Image-to-Multi-Modal Retrieval (IMMR), a process designed to retrieve rich multi-modal (i.e. image and text) documents based on image queries. We focus on representation learning for IMMR and analyze three key challenges for it: 1) skewed data and noisy label in real-world industrial data, 2) the information-inequality between image and text modality of documents when learning representations, 3) effective and efficient training in large-scale industrial contexts. To tackle the above challenges, we propose a novel framework named organizing categories and learning by classification for retrieval (OCLEAR). It consists of three components: 1) a novel category-oriented data governance scheme coupled with a large-scale classification-based learning paradigm, which handles the skewed and noisy data from a data perspective. 2) model architecture specially designed for multi-modal learning, where information-inequality between image and text modality of documents is considered for modality fusion. 3) a hybrid parallel training approach for tackling large-scale training in industrial scenario. The proposed framework achieves SOTA performance on public datasets and has been deployed in a real-world industrial e-commence system, leading to significant business growth. Code will be made publicly available.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.