Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivariant Neural Networks for Spin Dynamics Simulations of Itinerant Magnets (2305.03804v1)

Published 5 May 2023 in cond-mat.str-el, cond-mat.dis-nn, cond-mat.mtrl-sci, and cs.LG

Abstract: I present a novel equivariant neural network architecture for the large-scale spin dynamics simulation of the Kondo lattice model. This neural network mainly consists of tensor-product-based convolution layers and ensures two equivariances: translations of the lattice and rotations of the spins. I implement equivariant neural networks for two Kondo lattice models on two-dimensional square and triangular lattices, and perform training and validation. In the equivariant model for the square lattice, the validation error (based on root mean squared error) is reduced to less than one-third compared to a model using invariant descriptors as inputs. Furthermore, I demonstrate the ability to reproduce phase transitions of skyrmion crystals in the triangular lattice, by performing dynamics simulations using the trained model.

Citations (4)

Summary

We haven't generated a summary for this paper yet.