Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Surfaces of genus $g\geq 1$ in 3D contact sub-Riemannian manifolds (2305.03373v2)

Published 5 May 2023 in math.DG and math.DS

Abstract: We consider surfaces embedded in a 3D contact sub-Riemannian manifold and the problem of the finiteness of the induced distance (i.e., the infimum of the length of horizontal curves that belong to the surface). Recently it has been proved that for a surface having the topology of a sphere embedded in a tight co-orientable structure, the distance is always finite. In this paper we study closed surfaces of genus larger than 1, proving that such surfaces can be embedded in such a way that the induced distance is finite or infinite. We then study the structural stability of the finiteness/not-finiteness of the distance.

Summary

We haven't generated a summary for this paper yet.