Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Momentum-Incorporated Non-Negative Latent Factorization of Tensors Model for Dynamic Network Representation (2305.02782v1)

Published 4 May 2023 in cs.LG and cs.SI

Abstract: A large-scale dynamic network (LDN) is a source of data in many big data-related applications due to their large number of entities and large-scale dynamic interactions. They can be modeled as a high-dimensional incomplete (HDI) tensor that contains a wealth of knowledge about time patterns. A Latent factorization of tensors (LFT) model efficiently extracts this time pattern, which can be established using stochastic gradient descent (SGD) solvers. However, LFT models based on SGD are often limited by training schemes and have poor tail convergence. To solve this problem, this paper proposes a novel nonlinear LFT model (MNNL) based on momentum-incorporated SGD, which extracts non-negative latent factors from HDI tensors to make training unconstrained and compatible with general training schemes, while improving convergence accuracy and speed. Empirical studies on two LDN datasets show that compared to existing models, the MNNL model has higher prediction accuracy and convergence speed.

Summary

We haven't generated a summary for this paper yet.