Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

String Diagrams with Factorized Densities (2305.02506v5)

Published 4 May 2023 in cs.PL, cs.LG, cs.LO, math.CT, and math.PR

Abstract: A growing body of research on probabilistic programs and causal models has highlighted the need to reason compositionally about model classes that extend directed graphical models. Both probabilistic programs and causal models define a joint probability density over a set of random variables, and exhibit sparse structure that can be used to reason about causation and conditional independence. This work builds on recent work on Markov categories of probabilistic mappings to define a category whose morphisms combine a joint density, factorized over each sample space, with a deterministic mapping from samples to return values. This is a step towards closing the gap between recent category-theoretic descriptions of probability measures, and the operational definitions of factorized densities that are commonly employed in probabilistic programming and causal inference.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. In: 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022), 228, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany, pp. 29:1–29:0, 10.4230/LIPIcs.FSCD.2022.29.
  2. Richard Baker (1991): “Lebesgue measure” on ℝ∞superscriptℝ\mathbb{R}^{\infty}blackboard_R start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT. Proceedings of the American Mathematical Society 113(4), pp. 1023–1029, 10.2307/2048779.
  3. V. I. Bogachev (2007): Measure theory. Springer, Berlin; New York, 10.1007/978-3-540-34514-5.
  4. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, ACM, New York NY USA, p. 710–719, 10.1145/2933575.2935316. Available at https://dl.acm.org/doi/10.1145/2933575.2935316.
  5. In: Applied Category Theory Conference (ACT 2021), EPTCS, pp. 235–248. Available at http://arxiv.org/abs/2105.06332.
  6. Matteo Capucci & Bruno Gavranović (2022): Actegories for the Working Amthematician.
  7. Nick Chater, Joshua B Tenenbaum & Alan Yuille (2006): Probabilistic models of cognition: Conceptual foundations. Trends in cognitive sciences 10(7), pp. 287–291, 10.1016/j.tics.2006.05.008.
  8. Kenta Cho & Bart Jacobs (2019): Disintegration and Bayesian inversion via string diagrams. Mathematical Structures in Computer Science 29(7), pp. 938–971, 10.1017/S0960129518000488.
  9. Kyle Cranmer, Johann Brehmer & Gilles Louppe (2020): The frontier of simulation-based inference. Proceedings of the National Academy of Sciences 117(48), pp. 30055–30062, 10.1073/pnas.1912789117.
  10. Proceedings of the ACM on Programming Languages 7(POPL), pp. 1338–1368, 10.1145/3571239.
  11. David H. Fremlin (2010): Measure theory. 2: Broad foundations, 2. ed edition. Torres Fremlin, Colchester.
  12. Neural computation 29(1), pp. 1–49, 10.1162/NECO_a_00912.
  13. Tobias Fritz (2020): A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics. Advances in Mathematics 370, p. 107239, 10.1016/j.aim.2020.107239.
  14. Tobias Fritz & Andreas Klingler (2023): The d-Separation Criterion in Categorical Probability. Journal of Machine Learning Research 24(46), pp. 1–49.
  15. Tobias Fritz & Wendong Liang (2023): Free gs-Monoidal Categories and Free Markov Categories. Applied Categorical Structures 31(2), p. 21, 10.1007/s10485-023-09717-0.
  16. Discrete Applied Mathematics 42(2–3), p. 177–201, 10.1016/0166-218X(93)90045-P.
  17. Michèle Giry (1982): A categorical approach to probability theory. In B. Banaschewski, editor: Categorical Aspects of Topology and Analysis, Springer Berlin Heidelberg, Berlin, Heidelberg, p. 68–85, 10.1007/BFb0092872.
  18. In: Proceedings - Symposium on Logic in Computer Science, pp. 1–12, 10.1109/LICS.2017.8005137. ArXiv: 1701.02547 Citation Key: Heunen2017 ISSN: 10436871.
  19. Kiyosi Itô et al. (1984): An Introduction to Probability Theory. Cambridge University Press, 10.1017/9781139171809.
  20. Behavioral and brain sciences 40, p. e253, 10.1017/S0140525X16001837.
  21. Sergey Levine (2018): Reinforcement learning and control as probabilistic inference: Tutorial and review. arXiv preprint arXiv:1805.00909.
  22. arXiv preprint arXiv:1809.10756.
  23. Christian A Naesseth, Fredrik Lindsten & Thomas B Schon (2019): Elements of Sequential Monte Carlo. Foundations and Trends in Machine Learning 12(3), pp. 187–306, 10.1561/2200000074.
  24. Judea Pearl (2012): The causal foundations of structural equation modeling. Handbook of structural equation modeling, pp. 68–91.
  25. Judea Pearl & Dana Mackenzie (2018): The book of why: the new science of cause and effect. Basic books.
  26. Paolo Perrone (2019): Notes on Category Theory with examples from basic mathematics. arXiv preprint arXiv:1912.10642.
  27. Alexey Radul & Boris Alexeev (2021): The Base Measure Problem and its Solution. In: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS) 2021, 130, Proceedings of Machine Learning Research, San Diego, California, p. 3583–3591.
  28. Proceedings of the ACM on Programming Languages 5(POPL), pp. 1–29, 10.1145/3434292.
  29. Moritz Schauer & Frank van der Meulen (2023): Compositionality in algorithms for smoothing. arXiv preprint arXiv:2303.13865.
  30. Proc. ACM Program. Lang. 2(POPL), 10.1145/3158148.
  31. Toby St Clere Smithe (2020): Bayesian updates compose optically. arXiv preprint arXiv:2006.01631.
  32. Sam Staton (2017): Commutative Semantics for Probabilistic Programming, p. 855–879. Lecture Notes in Computer Science 10201, Springer Berlin Heidelberg, Berlin, Heidelberg, 10.1007/978-3-662-54434-1_32. Available at https://link.springer.com/10.1007/978-3-662-54434-1_32.
  33. Terence Tao (2011): An introduction to measure theory. Graduate studies in mathematics 126, American Mathematical Society, Providence, R.I, 10.1090/gsm/126/02.
  34. Matthijs Vákár & Luke Ong (2018): On S-Finite Measures and Kernels. Available at http://arxiv.org/abs/1810.01837. ArXiv:1810.01837 [math].
  35. Paul Wilson & Fabio Zanasi (2023): Data-Parallel Algorithms for String Diagrams. arXiv:https://arxiv.org/abs/2305.01041.
  36. In: Proceedings of the 35th International Conference on Machine Learning, PMLR, p. 5343–5352. Available at https://proceedings.mlr.press/v80/wu18f.html.

Summary

We haven't generated a summary for this paper yet.