Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wilson loop expectations as sums over surfaces on the plane (2305.02306v2)

Published 3 May 2023 in math.PR, math-ph, and math.MP

Abstract: Although lattice Yang-Mills theory on finite subgraphs of $\mathbb Zd$ is easy to rigorously define, the construction of a satisfactory continuum theory on $\mathbb Rd$ is a major open problem when $d \geq 3$. Such a theory should in some sense assign a Wilson loop expectation to each suitable finite collection $\mathcal L$ of loops in $\mathbb Rd$. One classical approach is to try to represent this expectation as a sum over surfaces with boundary $\mathcal L$. There are some formal/heuristic ways to make sense of this notion, but they typically yield an ill-defined difference of infinities. In this paper, we show how to make sense of Yang-Mills integrals as surface sums for $d=2$, where the continuum theory is more accessible. Applications include several new explicit calculations, a new combinatorial interpretation of the master field, and a new probabilistic proof of the Makeenko-Migdal equation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.