Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding cirrus clouds using explainable machine learning (2305.02090v2)

Published 3 May 2023 in physics.ao-ph and cs.LG

Abstract: Cirrus clouds are key modulators of Earth's climate. Their dependencies on meteorological and aerosol conditions are among the largest uncertainties in global climate models. This work uses three years of satellite and reanalysis data to study the link between cirrus drivers and cloud properties. We use a gradient-boosted machine learning model and a Long Short-Term Memory (LSTM) network with an attention layer to predict the ice water content and ice crystal number concentration. The models show that meteorological and aerosol conditions can predict cirrus properties with $R2 = 0.49$. Feature attributions are calculated with SHapley Additive exPlanations (SHAP) to quantify the link between meteorological and aerosol conditions and cirrus properties. For instance, the minimum concentration of supermicron-sized dust particles required to cause a decrease in ice crystal number concentration predictions is $2 \times 10{-4}$ mg m\textsuperscript{-3}. The last 15 hours before the observation predict all cirrus properties.

Citations (3)

Summary

We haven't generated a summary for this paper yet.